DOI QR코드

DOI QR Code

상용 Gentoo 폴리머가 경화된 고체주입표면에서 물방울 거동

Water droplet behavior on a solid-infused surface cured with commercial Gentoo polymer

  • Hyeongwon Kim (Department of Mechanical Information Engineering, Seoul National University of Science and Technology) ;
  • Jeong-Hyun Kim (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology)
  • 투고 : 2024.02.21
  • 심사 : 2024.03.16
  • 발행 : 2024.03.31

초록

In this study, the behavior of water droplets on a solid-infused surface was evaluated by quantifying a water droplet's contact angle, sliding angle, and terminal velocity. The contact angle hysteresis and sliding angle of water on the solid-infused surface were measured to be lower than those of the hydrophobic PTFE surface. It led to the enhancement of the initiation of the water droplet's movement. When the capillary number was lower than Ca < 0.004, the terminal velocity of the water droplet on the solid-infused surface was higher than the PTFE surface due to the low contact line resistance. However, the transition of the droplet morphology from a hemispherical shape to a streamlined teardrop shape beyond Ca > 0.004 lost the effect of reducing frictional resistance on the solid-infused surface.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2020R1C1C1005588).

참고문헌

  1. Rothstein, J.P., 2010, "Slip on Superhydrophobic Surfaces", Annual Review of Fluid Mechanics, Vol. 42, pp. 89~109. https://doi.org/10.1146/annurev-fluid-121108-145558
  2. Won, T.-S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., and Aizenber, J., 2011, "Bioinspired Self-repairing slippery surfaces with pressure-stable omniphobicity", Nature, Vol. 477, pp. 443~447 https://doi.org/10.1038/nature10447
  3. Wexler, J.S., Jacobi, I., Stone, H.A., 2015, "Shear-Driven Failure of Liquid-Infused Surfaces", Physical Review Letters, Vol. 114, 168301
  4. Kim, J.-H. and Rothstein, J.P., 2016, "Delayed lubricant depletion on liquid-infused randomly rough surfaces", Experiments in Fluids, Vol. 57, 81
  5. Hatte, S. and Pitchumani, R., 2022, "Novel nonwetting solid-infused surfaces for superior fouling mitigation", Journal of Colloid and Interface Science, Vol. 627, pp. 308~319 https://doi.org/10.1016/j.jcis.2022.06.155
  6. 김의진, 김정현, 2021, "거친 발수 표면에 충돌하는 유체 방울의 팽창 및 수축 역학: 미세유체 방울의 형성", 한국가시화정보학회지, Vol. 19, pp. 15~21
  7. 송준규, 김형대, 2018, "이동하는 소수성 및 친수성 표면에서 액적의 동접촉각 측정", 한국가시화정보학회지, Vol. 16, pp. 16~22
  8. 장문영, 박세현, 유동인, 2018, "친수성 마이크로 기둥 구조 표면에서의 표면 지형적 특성에 따른 퍼짐성 현상에 대한 실험적 연구", 한국가시화정보학회지, Vol. 16, pp. 35~39 https://doi.org/10.5407/JKSV.2018.16.3.035
  9. Furmidge, C.G.L., 1962, "Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention", Journal of Colloid Science, Vol. 17, pp. 309~324 https://doi.org/10.1016/0095-8522(62)90011-9
  10. Gao, N., Geyer, F., Pilat DW, Wooh S., Vollmer, D., and Butt HJ, 2018, "How drops start sliding over solid surfaces", Nature Physics, Vol. 14, pp. 191~196 https://doi.org/10.1038/nphys4305
  11. Podgorski, T., Flesselles, J.-M., and Limat, L., 2001, "Corners, Cusps, and Pearls in Running Drops", Physical Review Letters, Vol. 87, 036102
  12. Puthenveettil, B., Senthilkumar, V.-K., and Hopfinger, E.J.., 2013, "Motion of drops on inclined surfaces in the inertial regime", Journal of Fluid Mechanics, Vol. 726, pp. 26~61 https://doi.org/10.1017/jfm.2013.209