Acknowledgement
이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(RS-2023-00237341, 주택용/산업용 연소기·가스기기 연소성능 안전성 검증 및 안전기술 개발)
References
- Kovac, A., Matej, P. and Doria, M., 2021, "Hydrogen in Energy Transition: a Review," International Journal of Hydrogen Energy, Vol. 46(16), pp. 10016~10035. https://doi.org/10.1016/j.ijhydene.2020.11.256
- Ogden, J., Daniel, S., Zane, M. and Marshall, M., 2018, "Natural Gas as a Bridge to Hydrogen Transportation Fuel: Insights from the Literature," Energy Policy, Vol. 115, pp. 317~329. https://doi.org/10.1016/j.enpol.2017.12.049
- Shin, Y. and Cho, E. S., 2021, "Numerical Study on H2 Enriched NG Lean Premixed Combustion," Journal of the Korean Society Combustion, Vol. 26(1), pp. 51~58. https://doi.org/10.15231/jksc.2021.26.1.051
- Talibi, M., Balachandran, R. and Ladommatos, N., 2017, "Influence of Combusting Methane-Hydrogen Mixtures on Compression-Ignition Engine Exhaust Emissions and in-Cylinder Gas Composition," International Journal of Hydrogen Energy, Vol. 42(4), pp. 2381~2396. https://doi.org/10.1016/j.ijhydene.2016.10.049
- Park, H. Y., Yoon, S. H., Rho, B. S., Lee, W. J. and Choi, J. H., 2019, "Effect of Hydrogen (H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane (CH4), Ethane (C2H6) and Propane (C3H8)," Journal of the Korean Society of Marine Environment & Safety, Vol. 25(6), pp. 780~787. https://doi.org/10.7837/kosomes.2019.25.6.780
- Capurso, T., Stefanizzi, M. and Torresi, M., 2022, "Perspective of the Role of Hydrogen in the 21st Century Energy Transition," Energy Conversion and Management, Vol. 251, https://doi.org/10.1016/j.enconman.2021.114898.
- Baek, J. H., Lee, H. J. and Jang, C. B., 2016, "Comparison of H2, LNG, and LPG Explosion Characteristics In a Limited Space Using CFD Simulation," Journal of the Korean Institute of Gas, Vol. 20(3), pp. 12~21. https://doi.org/10.7842/kigas.2016.20.3.12
- Huang, H. X., Li, Y. H., Li, Z. Z. and Hou, P. W., 2022, "Role of Hydrogen in Stability and Mobility of Vacancy Clusters in Tungsten," Tungsten, Vol. 4(3), pp. 219~230. https://doi.org/10.1007/s42864-022-00151-8
- Hong, W., Yoon, S. H. and Jeon, M. G., 2022, "A Study on the Real-Time Temperature and Concentration Measurement of Combustion Pipe Flow Field," Journal of the Korean Society of Visualization, Vol. 20(2), pp. 86~92.
- Liu, C., Pei, Y., Cui, Z., Li, X., Yang, H., Xing, X. and Li, Y., 2023, "Study on the Stratification of the Blended Gas in the Pipeline with Hydrogen Into Natural Gas," International Journal of Hydrogen Energy, Vol. 48(13), pp. 5186~5196. https://doi.org/10.1016/j.ijhydene.2022.11.074
- Ren, S. and Zhang, Q., 2015, "Influence of Concentration Distribution of Hydrogen in Air on Measured Flammability Limits," Journal of Loss Prevention in the Process Industries, Vol. 34, pp. 82~91. https://doi.org/10.1016/j.jlp.2015.01.027
- Boulahlib, M. S., Medaerts, F. and Boukhalfa, M. A., 2021, "Experimental Study of a Domestic Boiler using Hydrogen Methane Blend and Fuel-Rich Staged Combustion," International Journal of Hydrogen Energy, Vol. 46(75), pp. 37628~37640. https://doi.org/10.1016/j.ijhydene.2021.01.103
- Marangon, A. and Carcassi, M. N., 2014, "Hydrogen-Methane Mixtures: Dispersion and Stratification Studies," International Journal of Hydrogen Energy, Vol. 31(11), pp. 6160~6168. https://doi.org/10.1016/j.ijhydene.2013.10.159
- Vudumu, S. K. and Umit, O. K., 2009, "Detailed Simulations of the Transient Hydrogen Mixing, Leakage and Flammability in Air in Simple Geometries," International Journal of Hydrogen Energy, Vol. 34(6), pp. 2824~2833. https://doi.org/10.1016/j.ijhydene.2009.01.021