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SOME FACTORIZATION PROPERTIES OF IDEALIZATION

IN COMMUTATIVE RINGS WITH ZERO DIVISORS

Sina Eftekhari, Sayyed Heidar Jafari, and Mahdi Reza Khorsandi

Abstract. We study some factorization properties of the idealization

R(+)M of a module M in a commutative ring R which is not necessarily
a domain. We show that R(+)M is ACCP if and only if R is ACCP and

M satisfies ACC on its cyclic submodules. We give an example to show
that the BF property is not necessarily preserved in idealization, and give

some conditions under which R(+)M is a BFR. We also characterize the

idealization rings which are UFRs.

1. Introduction

Throughout this paper, all rings are commutative with identity and all mod-
ules are unital. Anderson and Valdes-Leon [2] provided a framework for study-
ing factorization in commutative rings which are not necessarily domains. One
of the important constructions in commutative algebra which always results in
rings with nontrivial zero divisors is the idealization of a (nonzero) module. Let
R be a ring and M be an R-module. The set R ×M with the multiplication
(r1, x1)(r2, x2) = (r1r2, r1x2 + r2x1) and with natural addition is a ring called
the idealization of M in R, and is denoted by R(+)M . This construction can
also be viewed in matrix form as {( r x

0 r ) | r ∈ R, x ∈ M}. If M = R, the ring
R(+)R, which is called the self-idealization of R, can also be viewed as the ring
R[X]/

〈
X2

〉
. For an introduction to idealization and its properties we refer the

reader to [10, Section 25]. Also [3], besides providing new results, is a great
survey on this topic. In fact, [3, Section 5] is about the factorization properties
of rings that are constructed by idealization.

We recall some of the basic properties of idealization [10, Theorem 25.1].
An element (r, x) ∈ R(+)M is a unit if and only if r is a unit in R. A subset
of R(+)M of the form I(+)N is an ideal if and only if I is an ideal of R, N
is a submodule of M , and IM ⊆ N . Moreover, a prime ideal of R(+)M is of
the form p(+)M , where p is a prime ideal in R. Similarly, maximal ideals of
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R(+)M has the form m(+)M for some maximal ideal m of R. Finally, for ideals
Ii(+)Ni (i = 1, 2), we have (I1(+)N1)(I2(+)N2) = I1I2(+)(I1N2 + I2N1).

A ring R is called ACCP when every ascending chain of principal ideals of
R stabilizes. Similarly, a module with ACC on its cyclic submodules is called
ACCC. A ring R is called a bounded factorization ring or BFR if for every
nonzero nonunit element r ∈ R there exists an nr ∈ N such that if r = r1 · · · rn
for nonunit ri’s, then n ≤ nr. Similarly, an R-module M is called a BFM (or
a BF R-module) if for every nonzero x ∈ M , there exists nx ∈ N such that if
x = r1 · · · rny, where ri’s are nonunits in R and y ∈ M , then n ≤ nx. We can
also say that a ring (or a module, or an element) has the BF property. Also, if
R is a domain, we usually use the abbreviation BFD instead of BFR.

There are a number of ways to generalize the notion of irreducibility to
commutative rings with zero divisors (see [2, Section 2]). We only need the
following definitions: We call two elements a, b ∈ R associates and write a ∼ b
if ⟨a⟩ = ⟨b⟩, and a nonunit element a ∈ R is called irreducible or an atom if
when a = bc, then either a ∼ b or a ∼ c. A ring R is called présimplifiable
(introduced by Bouvier [6]) if whenever a = ab, then either a = 0 or b is a unit.
These rings are quite important in factorization theory since many factorization
properties of domains also hold in them (see [2]). Any BFR is présimplifiable
(see [2, p. 456]), but an ACCP ring is not necessarily présimplifiable (consider
any ACCP ring with a nontrivial idempotent, like F × F , where F is a field).
A ring R is called a UFR if any nonzero nonunit element of R can be written as
a product of atoms and this factorization is unique up to order and associates.
Obviously, any UFR is a BFR, and any BFR is ACCP.

Current results on the factorization properties of R(+)M are mostly for the
case where R is a domain (see [1–5,8]). The goal of this paper is to generalize
some of these results to arbitrary commutative rings.

First, we show that for any ring R and R-module M , the ring R(+)M is
ACCP if and only if R is ACCP and M is ACCC. Then, we give an example to
show that the BF property is not necessarily preserved in the idealization and
we provide some sufficient conditions under which R(+)M becomes a BFR.
Finally, we characterize the rings R(+)M which are UFRs.

2. Results

When R is a domain, R(+)M is ACCP if and only if R is ACCP and M is
ACCC ([2, Theorem 5.2(2)]). We show that this is also the case for arbitrary
rings though we need a completely different approach.

A quotient module of an ACCCmodule is not necessarily ACCC. However, in
the next lemma we show that certain chains of cyclic submodules in a quotient
module of an ACCC module stabilize. The idea is similar to what Frohn has
done in the proof of [9, Lemma 1].

Lemma 2.1. Let M be an R-module which is ACCC and let N be an R-
submodule of M . Also, suppose that Rx1 ⊆ Rx2 ⊆ · · · is an ascending chain
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of cyclic submodules in M/N , and xn = rnxn+1 for some rn ∈ R. If N = riN
for every i, then the chain Rx1 ⊆ Rx2 ⊆ · · · stabilizes.

Proof. First, we note that

x1 = r1x2 + y1 (for some y1 ∈ N)

= r1(x2 + y1/r1),

where by y1/r1 we mean a fixed element in N such that r1(y1/r1) = y1.
Now

x2 + y1/r1 = r2x3 + y2 + y1/r1 (for some y2 ∈ N)

= r2(x3 + y2/r2 + (y1/r1)/r2).

Proceeding this way, we get a chain Rx1 ⊆ R(x2 + z2) ⊆ R(x3 + z3) ⊆ · · · ,
where zi ∈ N . Since M is ACCC, we have R(xk + zk) = R(xk+1 + zk+1) = · · ·
for some k. Hence, for every n ≥ k, xn+1 + zn+1 = snxn + snzn for some
sn ∈ R, and so

xn+1 = snxn + snzn − zn+1 ∈ snxn +N.

Therefore, the chain Rx1 ⊆ Rx2 ⊆ · · · stabilizes. □

Theorem 2.2. For any ring R and R-module M , R(+)M is ACCP if and
only if R is ACCP and M is ACCC.

Proof. (⇒) The proof is the same as the one for the domain case ([2, Theo-
rem 5.2(2)]).

(⇐) Set T := R(+)M and let (r1, x1)T ⊆ (r2, x2)T ⊆ · · · be an ascending se-
quence of principal ideals of T . Also, suppose that (ri, xi) = (si, yi)(ri+1, xi+1)
for some (si, yi) ∈ T . Since R is ACCP, there exists a k ∈ N such that
rkR = rk+1R = · · · . Set I := rkR and N := rkM . It is easy to see that, for
every n ≥ k,

(2.1) snN = N, and snI = I,

and

(2.2) xn = snxn+1 + rn+1yn ∈ snxn+1 +N.

By (2.1) and Lemma 2.1, for some m ∈ N,
(2.3) N +Rxm = N +Rxm+1 = · · · .
Also, by (2.1) and (2.2), xn ∈ sn(Rxn+1+N) = sn(Rxn+N), and so for every
n ≥ max(k,m)

(2.4) N +Rxn = sn(N +Rxn).

Without loss of generality and by way of contradiction, we may assume that
(r1, x1)T ⊊ (r2, x2)T ⊊ · · · and that the equations (2.1), (2.3) and (2.4) hold
for any n,m ∈ N.

By (2.1), there exists a v ∈ R such that s1vr2 = r2, so (1− s1v)r2 = 0 and
hence (1− s1v)N = 0. On the other hand, by (2.3) and (2.4), in the R-module
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M/N , Rs1x2 = Rx2 and so for some u ∈ R we have (1 − s1u)x2 ∈ N , and so
(1− s1v)(1− s1u)x2 = 0. Since

(1− s1v)(1− s1u) = (1− s1((u+ v)− s1uv))

for w = (u+ v)− s1uv, we have (1− s1w)r2 = 0 and (1− s1w)x2 = 0.
Therefore[
(1, 0)− (s1, y1)(s1w

2,−w2y1)
]
(r2, x2) = (1− s21w

2, 0)(r2, x2)

= (1 + s1w, 0)(1− s1w, 0)(r2, x2)

= 0,

and so

(r2, x2) = (s1w
2,−w2y1)(s1, y1)(r2, x2)

= (s1w
2,−w2y1)(r1, x1),

hence (r2, x2)T ⊆ (r1, x1)T which is a contradiction. □

Corollary 2.3. Let R be a ring. Then R is ACCP if and only if R(+)R is
ACCP.

Next, we consider the bounded factorization property. When R is a domain,
the ring R(+)M is a BFR if and only if R is a BFD and M is BF R-module
([2, Theorem 5.2(3)]). First, we show that the “if” part of this result does not
hold when R is not a domain.

Example 2.4. Let S := Z2

[⋃
i∈N{Xi,1, . . . , Xi,i+1}

]
and consider the follow-

ing ideals in S:

I1 :=
〈
{Xi,c1 · · ·Xi,ci+1

| 1 ≤ cj ≤ i+ 1, 1 ≤ j ≤ i+ 1, i ∈ N}
〉
,

I2 := ⟨{Xi,jXk,l | i, j, k, l ∈ N, i ̸= k, j ≤ i+ 1, l ≤ k + 1}⟩
and

I3 :=
〈{ ∑

1≤j≤i+1

Xi,1 · · · X̂i,j · · ·Xi,i+1

−
∑

1≤j≤i+2

Xi+1,1 · · · X̂i+1,j · · ·Xi+1,i+2 | i, j ∈ N
}〉

.

We claim that the ring R = S
I1+I2+I3

is a BFR, but the ring R(+)R is not
a BFR.

Suppose on the contrary that there exist nonzero nonunit elements f and
fi,j such that f = fi,1 · · · fi,ki

, where {ki}i∈N is not bounded. Let xi,j be the

image of Xi,j in R. Also, Fi,j = fi,j and F = f for some F, Fi,j ∈ S. Moreover,

we set βi :=
∑

1≤j≤i+1 Xi,1 · · · X̂i,j · · ·Xi,i+1.
Suppose m is the largest integer for which some Xm,t appears in F . Let

v : S → S be the homomorphism that sets any Xi,j such that i ≥ m+ 1 equal
to 0. We note that each nonunit in R is actually nilpotent and so for any
A ∈ S with nonzero coefficient, A is a unit. We may consider each Fi,j as a
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sum of proper subproducts of generators of I1 since other terms become 0 in
R. If follows that for a large enough i, v(F ) = v(Fi,1) · · · v(Fi,ki

) = 0 modulo
v(I). So, F = v(F ) ∈ v(I) ⊆ I1 + I2 + v(I3). Now v(I3) ⊆ I3 + v(S)βm, so
F − Lβm ∈ I for some L ∈ v(S), and we may assume L = 1 since the product
of any variable in v(S) and βm is in I1 + I2. Therefore, f = βm. On the other
hand, β1 = β2 = · · · and so for every i ∈ N, we have f = βi.

For every i ∈ N, the element βi is irreducible in S (and in any subring of S
resulting from removing some Xj,k with j ̸= i). One way to see this is to write
βi as a polynomial with respect to the variable Xi,1, that is

βi = Xi,2 · · ·Xi,i+1 +
∑

2≤j≤i+1

(
Xi,2 · · · X̂i,j · · ·Xi,i+1

)
Xi,1.

Since S is a domain, the only way this polynomial can factor into two nonunits
is that its coefficient have a nonunit common divisor. But S is also a UFD and

no Xi,j (2 ≤ j ≤ i + 1) divides
∑

2≤j≤i+1

(
Xi,2 · · · X̂i,j · · ·Xi,i+1

)
. Hence, no

such factorization is possible.
Now we show that x1,1 +x1,2 = β1(= f) is irreducible in R. Suppose on the

contrary that f = gh, where g and h are nonunit elements of R. Let G,H ∈ S
be such that G = g and H = h. We get

X1,1 +X1,2 −GH =
∑

1≤i≤k

Fi(βi − βi+1) + F ′ + F ′′,

where Fi ∈ S, F ′ ∈ I1, F
′′ ∈ I2 (and, of course, Fi = 0 for every i ⪈ k). For

A ∈ S let ℓ(A) denote the sum of the monomials of the least total degree and
let T (A) denote the total degree of A. We have T (ℓ(GH)) ≥ 2 since none of
the elements G and H has a nonzero constant term for otherwise they would
be units in R. So β1 must appear on the right hand side and the only way for
this is for F1 to have 1 as the constant term. After removing β1 from each side
we get

(−GH =)GH = β2 + (F1 − 1)(β1 − β2) +
∑

2≤i≤k

Fi(βi − βi+1) + F ′ + F ′′.

Set X1,1 = X1,2 = 0. Now, either (F1 − 1)β2 = 0 or T (ℓ(F1 − 1)β2) ≥ 3;
also, T (ℓ(F ′)) ≥ 3; so β2 or any sum of its terms cannot appear in these parts.
Moreover, we note that any monomial in F ′′ has a subproduct of the form
Xi,jXi′,j′ , where i ̸= i′ and so this part of the right hand side also cannot
contain β2 or any sum of its terms. We cannot have ℓ(G)ℓ(H) = β2 since
either (GH =)ℓ(G)ℓ(H) = 0 or 0 ̸= ℓ(G)ℓ(H) = β2 which is not possible since
as we saw β2 is irreducible in S (and this is also the case after setting X1,1 and
X1,2 to 0). Hence, the only remaining possibility is for F2 to have a nonzero
constant term. Now, we can repeat the argument until, eventually, we get
the element Fk+1 with a nonzero constant term, and that is a contradiction.
Therefore, f = βi is irreducible which of course means it has the BF property
too. But this contradicts our initial assumption on f . Hence, R is a BFR.
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The ring R(+)R is not a BFR, since for every i ∈ N,

(x1,1, 1)(x1,2, 1) = (0, β1) = (0, βi) = (xi,1, 1)(xi,2, 1) · · · (xi,i+1, 1).

Let us call a factorization minimal if we cannot remove any factor from it.
Formally, x = a1 · · · an is minimal if x ̸=

∏
ai∈A ai for any A ⊊ {a1, . . . , an}.

Also, we say that an element r ∈ R has the bounded minimal factorization
property if the set

{n∈N |There exist nonunits a1, . . . , an ∈ R such that r=a1 · · · an is minimal}

is bounded. For the element 0 ∈ R, this property coincides with the notion of
being U-bounded which is defined in [1, Section 4], using the language of U-
factorization. Although we avoided discussing U-factorizations in this paper,
nevertheless we use the term U-bounded in this case.

Proposition 2.5. Let R be a ring and let M be an R-module.

(1) If R(+)M is a BFR, then R is a BFR and M is a BFM.
(2) Let R be a BFR and M a BFM. Also, suppose that 0 ∈ R is U-bounded.

Then R(+)M is a BFR.

Proof. (1) This is similar to [2, Theorem 5.2(3)].
(2) Assume that R is a BFR and M is a BFM, but R(+)M is not a BFR.

Then, since R is a BFR, there must exist a nonzero element (0, x) ∈ R(+)M
which does not have the BF property. Assume that

(0, x) = (ai,1, xi,1)(ai,2, xi,2) · · · (ai,ni , xi,ni)

are factorizations of (0, x), where the set {ni}i∈N is not bounded. Without loss
of generality, we may assume that 0 = ai,1ai,2 · · · ai,ki are minimal factoriza-
tions of 0. Since 0 is U-bounded, the set {ki}i∈N is bounded, and so the set
{ni − ki}i∈N must be unbounded. But then since

(0, x) = (0, yi)(ai,ki+1, xi,ki+1) · · · (ai,ni , xi,ni)

for some yi ∈ M , we have x = ai,ki+1 · · · ai,ni
yi, and so M is not a BFM, which

is a contradiction. □

Lemma 2.6. Let R be a ring.

(1) If 0 is U-bounded, then the set Min(R) is finite.
(2) If R is reduced, then the converse also holds.

Proof. (1) Suppose on the contrary that Min(R) is infinite and let n ∈ N.
Choose distinct p′, p1, . . . , pn ∈ Min(R), and using the Prime Avoidance The-
orem, choose elements

ai ∈ pi \
⋃

1≤j≤n,i ̸=j

pj ∪ p′.
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In the ring R′ = R/Nil(R), α = a1 · · · an ̸= 0, since α /∈ p′. Since R′ is reduced,
by [10, Corollary 2.2] and the Prime Avoidance Theorem again, AnnR′(α) ⊈⋃

1≤i≤n pi, and so there exists some

β ∈ AnnR′(α) \
⋃

1≤i≤n

pi.

Therefore, βa1 · · · an ∈ Nil(R), and so, for some k ∈ N,

βka1
k · · · ank = 0.

Now any subproduct of βka1
k · · · ank which is equal to 0 must contain the

elements β, a1, . . . , an since it belongs to every P ∈ Min(R). Hence 0 is not
U-bounded.

(2) This is a special case of [1, Lemma 4.16]. We provide a direct proof
nevertheless. Since r1 · · · rn = 0 if and only if

Min(R) ⊆
⋃

1≤i≤n

{p ∈ Spec(R) | ri ∈ p},

it follows that the factorization 0 = r1 · · · rn can be refined to a factorization
of a length less than or equal to |Min(R)|. □

Corollary 2.7. Let R be a reduced BFR with |Min(R)| < ∞. Also, let M be
an R-module which is BFM. Then R(+)M is a BFR.

Proof. It follows from Proposition 2.5 and Lemma 2.6. □

Finally, we consider UFRs. In [8, Corollary 9.3], the authors showed that
if R is a field, then R(+)R is a UFR. In the following theorem, we generalize
this result. We recall that an SPIR is a local principal ideal ring with a nilpo-
tent maximal ideal, and a semisimple module is a module that is the sum (or
equivalently, direct sum) of its simple submodules. In the next theorem, we
need the following result by Bouvier [7]: A ring R is a UFR if and only if 1) R
is a UFD, or 2) (R,m) is quasi-local and m2 = 0, or 3) R is an SPIR.

Theorem 2.8. Let R be a ring and M a nonzero R-module. The following are
equivalent:

(1) R(+)M is a UFR.
(2) (R,m) is quasi-local with m2 = 0 and mM = 0.
(3) (R,m) is quasi-local with m2 = 0 and M is semisimple.
(4) R(+)M is présimplifiable and every nonzero nonunit element of R(+)M

is an atom.

Proof. (1) ⇒ (2) The ring R(+)M cannot be a domain, let alone a UFD.
Now, suppose that R(+)M is quasi-local with the maximal ideal I(+)M and

(I(+)M)2 = 0. Then since (I(+)M)2 = I2(+)IM , the ring R is quasi-local
with the maximal ideal I, I2 = 0, and IM = 0.
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If R(+)M is an SPIR, then R is an SPIR and the maximal ideal of R(+)M
is m(+)M , where m is the unique maximal ideal of R. The ideal 0(+)M is
principal and so M is cyclic. Also, for some ℓ ∈ N,

(m(+)M)ℓ = 0(+)M.

If ℓ > 1, then M = mℓ−1M , and so by Nakayama’s Lemma, M = 0 which is a
contradiction. Hence ℓ = 1, and so m = 0.

(2) ⇒ (3) If mM = 0, then M is a vector space over R/m, and so M is
semisimple.

(3) ⇒ (2) This follows since every simple submodule of M is of the form
R/m.

(2) ⇒ (4) It is easy to see that a quasi-local ring is présimplifiable, and so
the first part holds. The second part follows since (m(+)M)2 = 0, and so the
product of any two nonunits is 0.

(4) ⇒ (1) Let x be a nonzero nonunit element in R(+)M . If x = yz, then
without loss of generality, x ∼ y, and so y = xt for some t. Now x = xtz, and
so z is a unit since R(+)M is présimplifiable. Therefore, any factorization of
x is of length 1, and so R(+)M is a UFR. □

Acknowledgement. The authors would like to thank the referee for careful
reading of the paper and very helpful comments.
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[7] A. Bouvier, Structure des anneaux à factorisation unique, Publ. Dép. Math. (Lyon) 11

(1974), no. 3, 39–49.
[8] G. W. Chang and D. Smertnig, Factorization in the self-idealization of a PID, Boll.

Unione Mat. Ital. (9) 6 (2013), no. 2, 363–377.

[9] D. Frohn, ACCP rises to the polynomial ring if the ring has only finitely many associated
primes, Comm. Algebra 32 (2004), no. 3, 1213–1217. https://doi.org/10.1081/AGB-
120027975

[10] J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in
Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.

https://doi.org/10.1216/rmjm/1008959664
https://doi.org/10.1216/rmjm/1008959664
https://doi.org/10.1216/rmjm/1181072068
https://doi.org/10.1216/rmjm/1181072068
https://doi.org/10.1216/JCA-2009-1-1-3
https://doi.org/10.1081/AGB-120004871
https://doi.org/10.1007/s40574-016-0107-8
https://doi.org/10.1007/s40574-016-0107-8
https://doi.org/10.1081/AGB-120027975
https://doi.org/10.1081/AGB-120027975


FACTORIZATION OF IDEALIZATION IN COMMUTATIVE RINGS 299

Sina Eftekhari

Faculty of Mathematical Sciences

Shahrood University of Technology
P.O. Box 36199-95161

Shahrood, Iran
Email address: sina.eftexari@gmail.com

Sayyed Heidar Jafari

Faculty of Mathematical Sciences
Shahrood University of Technology

P.O. Box 36199-95161

Shahrood, Iran
Email address: shjafari@shahroodut.ac.ir

Mahdi Reza Khorsandi
Faculty of Mathematical Sciences

Shahrood University of Technology

P.O. Box 36199-95161
Shahrood, Iran

Email address: khorsandi@shahroodut.ac.ir


