DOI QR코드

DOI QR Code

SHARP BOUNDS OF FIFTH COEFFICIENT AND HERMITIAN-TOEPLITZ DETERMINANTS FOR SAKAGUCHI CLASSES

  • Surya Giri (Department of Applied Mathematics Delhi Technological University) ;
  • S. Sivaprasad Kumar (Department of Applied Mathematics Delhi Technological University)
  • 투고 : 2023.01.07
  • 심사 : 2024.01.08
  • 발행 : 2024.03.31

초록

For the classes of analytic functions f defined on the unit disk satisfying ${\frac{2zf'(z)}{f(z)-f(-z)}}{\prec}{\varphi}(z)$) and ${\frac{(2zf'(z))'}{(f(z)-f(-z))'}}{\prec}{\varphi}(z)$, denoted by S*s(𝜑) and Cs(𝜑), respectively, the sharp bound of the nth Taylor coefficients are known for n = 2, 3 and 4. In this paper, we obtain the sharp bound of the fifth coefficient. Additionally, the sharp lower and upper estimates of the third order Hermitian Toeplitz determinant for the functions belonging to these classes are determined. The applications of our results lead to the establishment of certain new and previously known results.

키워드

과제정보

The work of the Surya Giri is supported by University Grant Commission, New-Delhi, India under UGC-Ref. No. 1112/(CSIR-UGC NET JUNE 2019).

참고문헌

  1. O. P. Ahuja, K. Khatter, and V. Ravichandran, Toeplitz determinants associated with Ma-Minda classes of starlike and convex functions, Iran. J. Sci. Technol. Trans. A Sci. 45 (2021), no. 6, 2021-2027. https://doi.org/10.1007/s40995-021-01173-6
  2. K. Bano, M. Raza, and D. K. Thomas, On the coefficients of B1(α) Bazilevic functions, Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. RACSAM 115 (2021), Paper No. 7, 12 pp. https://doi.org/10.1007/s13398-020-00947-8
  3. N. E. Cho, B. Kowalczyk, and A. Lecko, Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis, Bull. Aust. Math. Soc. 100 (2019), no. 1, 86-96. https://doi.org/10.1017/s0004972718001429
  4. K. Cudna, O. S. Kwon, A. Lecko, Y. J. Sim, and B. Smiarowska, The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α, Bol. Soc. Mat. Mex. (3) 26 (2020), no. 2, 361-375. https://doi.org/10.1007/s40590-019-00271-1
  5. R. N. Das and P. Singh, On subclasses of schlicht mapping, Indian J. Pure Appl. Math. 8 (1977), no. 8, 864-872.
  6. K. Gangania and S. S. Kumar, A generalized Bohr-Rogosinski phenomenon, Iran. J. Sci. 47 (2023), no. 1, 187-198. https://doi.org/10.1007/s40995-022-01398-z
  7. P. Goel and S. S. Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 1, 957-991. https://doi.org/10.1007/s40840-019-00784-y
  8. W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973), 297-326. https://doi.org/10.4064/ap-28-3-297-326
  9. K. Khatter, V. Ravichandran, and S. S. Kumar, Estimates for initial coefficients of certain starlike functions with respect to symmetric points, in Applied analysis in biological and physical sciences, 385-395, Springer Proc. Math. Stat., 186, Springer, New Delhi, 2016. https://doi.org/10.1007/978-81-322-3640-5_24
  10. V. Kumar and N. E. Cho, Hermitian-Toeplitz determinants for functions with bounded turning, Turkish J. Math. 45 (2021), no. 6, 2678-2687. https://doi.org/10.3906/mat2101-104
  11. S. Kumar and V. Kumar, Sharp estimates on the third order Hermitian-Toeplitz determinant for Sakaguchi classes, Commun. Korean Math. Soc. 37 (2022), no. 4, 1041-1053. https://doi.org/10.4134/CKMS.c210332
  12. V. Kumar, R. Srivastava, and N. E. Cho, Sharp estimation of Hermitian-Toeplitz determinants for Janowski type starlike and convex functions, Miskolc Math. Notes 21 (2020), no. 2, 939-952. https://doi.org/10.18514/mmn.2020.3361
  13. A. Lecko, Y. J. Sim, and B. Smiarowska, The fourth-order Hermitian Toeplitz determinant for convex functions, Anal. Math. Phys. 10 (2020), no. 3, Paper No. 39, 11 pp. https://doi.org/10.1007/s13324-020-00382-3
  14. A. Lecko and B. Smiarowska, Sharp bounds of the Hermitian Toeplitz determinants for some classes of close-to-convex functions, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 5, 3391-3412. https://doi.org/10.1007/s40840-021-01122-x
  15. R. J. Libera and E. J. Z lotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251-257. https://doi.org/10.2307/2043698
  16. P. T. Mocanu, Certain classes of starlike functions with respect to symmetric points, Mathematica (Cluj) 32(55) (1990), no. 2, 153-157.
  17. Z. Nehari and E. Netanyahu, On the coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 8 (1957), 15-23. https://doi.org/10.2307/2032803
  18. M. Obradovi'c and N. Tuneski, Hermitian Toeplitz determinants for the class S of univalent functions, Armen. J. Math. 13 (2021), Paper No. 4, 10 pp. https://doi.org/10.52737/18291163-2021.13.4-1-10
  19. V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 20 (2004), no. 1, 31-37.
  20. K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), no.1, 72-75. https://doi.org/10.2969/jmsj/01110072
  21. T. N. Shanmugam, C. Ramachandran, and V. Ravichandran, Fekete-Szego problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc. 43 (2006), no. 3, 589-598. https://doi.org/10.4134/BKMS.2006.43.3.589
  22. J. Thangamani, On starlike functions with respect to symmetric points, Indian J. Pure Appl. Math. 11 (1980), no. 3, 392-405.
  23. K. Ye and L.-H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math. 16 (2016), no. 3, 577-598. https://doi.org/10.1007/s10208-015-9254-z