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CURVATURE ESTIMATES FOR A CLASS OF FULLY

NONLINEAR ELLIPTIC EQUATIONS WITH GENERAL

RIGHT HAND SIDES

Jundong Zhou

Abstract. In this paper, we establish the curvature estimates for a class
of curvature equations with general right hand sides depending on the

gradient. We show an existence result by using the continuity method

based on a priori estimates. We also derive interior curvature bounds for
solutions of a class of curvature equations subject to affine Dirichlet data.

1. Introduction

One of classic problems in differential geometry is to find a closed smooth
hypersurface with prescribed curvature. For example, given a positive function
ψ in Rn+1\{0}, one would like to find a star-shaped hypersurface M ⊆ Rn+1

with respect to the origin such that its k-th Weingarten curvature is ψ. The
problem is equivalent to solve the following equation

(1.1) σk(κ1, κ2, . . . , κn)(X) = ψ(X), ∀X ∈M,

where σk is the k-th elementary symmetric function and (κ1, κ2, . . . , κn) are
the principal curvatures ofM . Eq. (1.1) has been widely studied, seeing [1,3,4,
13,16,24,25,34] for related work. Another example is the Weingarten curvature
equation in general form

(1.2) σk(κ1, κ2, . . . , κn)(X) = ψ(X, ν(X)), ∀X ∈M,

where ν(X) is the outer normal vector field along the hypersurfaceM . Eq. (1.2)
is associated with many important geometry problems, such as Minkowski prob-
lem and the problem of prescribing curvature measures in convex geometry.
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The problem of C2 estimates for admissible solutions of Eq. (1.2) is still open.
One can consult [2–4,14,15,17–19,21–23,28–30,32] for more work.

The following Eq. (1.3) is similar to Eq. (1.2), which has also been widely
discussed. Let H be the mean curvature of M , and define the (0, 2)-tensor η
on M by

η = Hgij − hij ,

where gij and hij are the first and second fundamental forms of M , respec-
tively. Denote the eigenvalues of g−1η by λ(η) = (H−κ1, H−κ2, . . . ,H−κn).
Substituting (κ1, κ2, . . . , κn) by λ(η) in Eq. (1.2) gives

(1.3) σk(λ(η))(X) = ψ(X, ν(X)), ∀X ∈M.

In the complex setting, when k = n, Eq. (1.3) is called Monge-Ampère equation
for (n − 1)-plurisubharmonic functions, which is related to the Gauduchon
conjecture [12,33] in complex geometry. Moreover, this type of Eq. (1.3) arises
from conformal geometry. The (0, 2)-tensor η is similar to Schouten tensor Ag,
where

Ag =
1

n− 2

(
Ricg −

Rg

2(n− 1)
g
)
,

and Ricg is Ricci tensor, Rg is scalar curvature. Let [g0] denote the conformal
class of g0 on a smooth closed Riemannian manifold of dimension n ≥ 3. An
interesting problem is to find a metric g ∈ [g0] such that

σk(Ag) = ψ(x),

that is the well-known σk-Yamabe problem. In [9], Chu-Jiao established the
curvature estimates and obtained an existence result on the closed star-shaped
(η, k)-convex hypersurface satisfying Eq. (1.3). The author in [37] generalized
Chu-Jiao’s result in Euclidean space to space form. Inspired by Chu-Jiao’s re-
sult, Chen-Tu-Xiang [6,7] considered the corresponding quotient Hessian equa-
tions

(1.4)
σk
σl

(λ(η))(X) = ψ(X, ν(X)), ∀X ∈M,

in Euclidean space and the warped product manifold and obtained the similar
results. For other relevant results, refer to [8, 10].

Inspired by the above works, we consider a more wider class of prescribed
Weingarten curvature equations as below

(1.5) f(λ(η)) = ψ
(
X, ν(X)

)
, ∀X ∈M,

where 0 < ψ ∈ C2
(
Rn+1 × Sn

)
, f is a symmetric function of λ(η) and satisfies

the following conditions (1.6)-(1.14). Note that except (1.14), all conditions
are proposed by Caffarelli-Nireberg-Spruck [3, 4]. The function f is assumed
to be defined in a symmetric open and convex cone Γ ⊂ Rn with vertex at the
origin,

(1.6) Γn = {λ ∈ Rn |λi > 0, 1 ≤ i ≤ n} ⊂ Γ ⊂ Γ1 = {λ ∈ Rn |
n∑

i=1

λi > 0},



CURVATURE ESTIMATES 357

and satisfies the conditions

(1.7) fi =
∂f

∂λi
> 0 in Γ, 1 ≤ i ≤ n,

(1.8) f is a concave positive function in Γ.

To get C0 and C1 estimate of Eq. (1.5), we assume that there exist two positive
constants r1 < 1 < r2 such that

(1.9) ψ(X,
X

|X|
) ≥ f

(n− 1

r1
1
)

for |X| = r1,

(1.10) ψ(X,
X

|X|
) ≤ f

(n− 1

r2
1
)

for |X| = r2,

(1.11)
∂

∂ρ

(
ρψ(X, ν)

)
≤ 0 for r1 ≤ ρ ≤ r2,

where 1 = (1, 1, . . . , 1) and ρ = |X|. Let ψ0 = inf
Rn+1×Sn

ψ. We assume that

(1.12) lim
λ→∂Γ

f(λ) ≤ ψ0

for some constant ψ0 < ψ0 and

ψ0 <
1

r2
f
(
(n− 1)1

)
.

In addition we assume that for every C > 0 and every compact set K in Γ
there is a number R = R(C,K) such that

(1.13) f(Rλ) ≥ C for all λ ∈ Γ.

If λ(η) ∈ Γ for all X ∈M , hypersurface M ⊂ Rn+1 is called Γ-convex. Let the
principal curvature of M satisfy κ1 ≥ κ2 ≥ · · · ≥ κn. Finally we assume that
for some sufficiently small constant θ > 0, if |κi| ≤ θκ1 for all i ≥ 2, then there
exits a constant c0 > 0 such that

(1.14)

n∑
i=1

fi
(
λ(η)

)
≥ c0κ1.

Remark 1.1. Specially, assumption (1.14) holds for Eqs. (1.3) and (1.4). In
addition,

n∑
i=1

∂σ2(κ)

∂κi
= (n− 1)σ1(κ) ≥ (n− 1)κ1,

assumption (1.14) holds for Eq. (1.2) for k = 2. It is worth emphasizing that
assumption (1.14) is critical for curvature estimates.
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Theorem 1.2. Let M be a closed star-shaped Γ-convex hypersurface satisfying
the curvature Eq. (1.5). Suppose that f and ψ satisfy (1.6)-(1.8), (1.12)-(1.14).
Then we have

(1.15) max
X∈M

∣∣κi(X)
∣∣ ≤ C, 1 ≤ i ≤ n,

where C is a constant depending on n,
∣∣X∣∣

C1 and
∣∣ψ∣∣

C2 .

From Theorem 1.2, we obtain the following result by applying the continuity
method.

Theorem 1.3. Suppose f and ψ satisfy (1.6)-(1.14). Then there exists a
unique C3,δ closed star-shaped Γ-convex hypersurface M satisfying Eq. (1.5)
for any δ ∈ (0, 1).

Another interesting question in geometric analysis is whether interior cur-
vature estimates hold. There are no interior curvature bounds for graphs of
prescribed k-th (k ≥ 3) mean curvature unless we make some additional as-
sumptions (see [35, 36]). Purely interior curvature bounds had been obtained
under a weakened condition in [20] for prescribed scalar curvature equations
with general right hand sides. Purely interior curvature estimates for 3d scalar
curvature equations were proved completely by Qiu [27]. Sheng, Urbas and
Wang [31] proved interior curvature estimates for a class of fully nonlinear el-
liptic equations subject to affine Dirichlet data, generalizing the well-known
Pogorelov estimates [26]. Recently, Chen, Dong and Han [5] proved Pogorelov
type estimates for the equation

σk(η)

σl(η)
= ψ(x),

which imply Liouville theorem for such equation. We also consider Pogorelov
type curvature estimation in this paper.

Let Ω be a bounded domain in Rn, u ∈ C2(Ω). κ = (κ1, . . . , κn) and ν(x)
denote the principle curvatures and the upward unit normal vector field of the
graph X = (x, u(x)) at x in Ω,

ν(x) =
(−Du, 1)√
1 + |Du|2

.

Setting λ(η) = (H−κ1, . . . ,H−κn), we consider the following Dirichlet problem{
f
(
λ(η)

)
= ψ

(
X, ν(x)

)
, x ∈ Ω,

u(x) = ϕ(x), x ∈ ∂Ω,
(1.16)

where 0 < ψ ∈ C2(Ω × R × Sn), ϕ is affine and λ(η) ∈ Γ. Using the method
of proof of Theorem 1.2, we establish the following Pogorelov type curvature
estimates.

Theorem 1.4. Suppose that f satisfy (1.6)-(1.8), (1.12)-(1.14) and let u ∈
C4(Ω) ∩ C0,1(Ω) be a solution of the Dirichlet problem (1.16). Then there
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exists a constant β > 0 such that the second fundamental form A of graph
{(x, u(x))} satisfies

(1.17) |A(x)| ≤ C

(ϕ− u)β
, ∀x ∈ Ω,

where C is a constant depending on c0, n, |u|C1(Ω), |ϕ|C1(Ω) and |ψ|C2(Ω×R×Sn).

The rest of this paper is organized as follows. In Section 2, we give some
definitions and important formulas. In Section 3, we give the curvature esti-
mates, that is Theorem 1.2. In Section 4, we give the proof for the existence,
that is Theorem 1.3. In Section 5, we derive the interior curvature bounds for
solutions of Eq. (1.16), that is Theorem 1.4.

2. Preliminaries

In this section, we recall some geometric quantities and related formulas on
hypersurfaces in Rn+1. We choose an orthonormal frame in Rn+1 such that
{e1, . . . , en} are tangent to M and en+1 is the unit outer normal of M . Let
{ω1, . . . , ωn, ωn+1} be the corresponding coframe. On M ,

ωn+1 = 0.

The second fundamental form of M can be written as

ωi,n+1 = hijωj .

The following formulas are well known for hypersurfaces in Rn+1.

(2.1) Xij = −hijen+1 Gauss formula,

(2.2)
(
en+1

)
i
= hijej Weingarten equation,

(2.3) hijk = hikj Codazzi formula,

(2.4) Rijkl = hikhjl − hilhjk Gauss equation,

where Rijkl is the Riemannian curvature tensor. From (2.1)-(2.4), we have

hijkl = hklij + hmk(hmjhil − hmlhij) + hmi(hmjhkl − hmlhkj).(2.5)

We assume the origin is inside the body enclosed by M . Since M is a star-
shaped hypersurface in Rn+1, the position vector X of M is expressed as

X(x) = ρ(x)x.

Following the notations in [19], let ∇ be the gradient on Sn. Then the induced
metric, unit normal vector and second fundamental form on M are given, re-
spectively, by

gij = ρ2δij +∇iρ∇jρ, gij =
1

ρ2
(
δij −

∇iρ∇jρ

ρ2 + |∇ρ|2
)
,

(2.6) ν =
ρx−∇ρ√
ρ2 + |∇ρ|2

,
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(2.7) hij =
1√

ρ2 + |∇ρ|2
(
ρ2δij + 2∇iρ∇jρ− ρ∇ijρ

)
.

The support function of M can be expressed as u = ⟨X, ν⟩, so we have

(2.8) u =
ρ2√

ρ2 + |∇ρ|2
.

For simplicity, we introduce the following notations:

G(hij) = f
(
λ(η)

)
, Gij =

∂G

∂hij
, Gij,rs =

∂2G

∂hijhrs
,

F
(
ηij

)
= f

(
λ(η)

)
, F ij =

∂F

∂ηij
, F ij,rs =

∂2F

∂ηijηrs
.

Equation (1.5) can be written as

(2.9) G(hij) = F
(
ηij

)
= ψ

(
X, ν(X)

)
.

If (hij) is diagonal and h11 ≥ h22 ≥ · · · ≥ hnn, then

G11 ≤ G22 ≤ · · · ≤ Gnn.

Since ηii =
∑

k ̸=i hkk, η11 ≤ η22 ≤ · · · ≤ ηnn. Then

F 11 ≥ F 22 ≥ · · · ≥ Fnn.

Lemma 2.1. Let M be a closed star-shaped Γ-convex hypersurface satisfying
Eq. (1.5). Then

(1) G(hij) = f
(
λ(η)

)
is elliptic on M ,

(2) G(hij) is concave with respect to (hij),

(3)
n∑

i=1

Gii = (n− 1)
n∑

i=1

F ii,

(4) Gijhij = F ijηij,
(5) Gijhijk = F ijηijk,
(6) Gij,klhijrhkls = F ij,klηijrηkls.

Proof. (1) By the chain rule, we have

(
Gij

)
=



∑
i ̸=1

F ii −F 12 · · · −F 1n

−F 21
∑
i ̸=2

F ii · · · −F 2n

...
...

. . .
...

−Fn1 −Fn2 · · ·
∑
i ̸=n

F ii


.

Obviously, (f1, f2, . . . , fn) are the eigenvalues of
(
F ij

)
. By an orthogonal trans-

formation, we know the eigenvalues of
(
Gij

)
are

(∑
i ̸=1 fi,

∑
i ̸=2 fi, . . . ,

∑
i ̸=n fi

)
.

From (1.7), we have
(
Gij

)
> 0, which means that

(
Gij

)
is elliptic.

(2) By (1.8), we know F (ηij) is concave with respect to (ηij). Since ηij is
linear dependent on hij , G(hij) is also concave respect to

(
hij

)
.
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(3) From Gii = ∂F
∂ηkl

∂ηkl

∂hii
=

∑
j ̸=i F

jj , we have

n∑
i=1

Gii = (n− 1)

n∑
i=1

F ii.

(4) A straightforward calculation yields

Gijhij =
∂F

∂ηkl

∂ηkl
∂hij

hij = F ijηij .

(5) Similar to (4), we have

Gijhijk =
∂F

∂ηkl

∂ηkl
∂hij

hijk = F ijηijk.

(6) Applying the chain rule, we have

Gij,klhijrhkls =
∂2F

∂ηpq∂ηmn

∂ηpq
∂hij

∂ηmn

∂hkl
hijrhkls +

∂F

∂ηpq

∂2ηpq
∂hij∂hkl

hijrhkls

=
∂2F

∂ηpq∂ηmn

∂ηpq
∂hij

∂ηmn

∂hkl
hijrhkls

= F ij,klηijrηkls. □

The following lemma can be found in [13].

Lemma 2.2. For any symmetric matrix (ηij), we have

Gij,klηijηkl = Gii,jjηiiηjj +
∑
i ̸=j

Gii −Gjj

hii − hjj
η2ij .

The second term on the right-hand is nonpositive if G is concave, and it is
interpreted as a limit if hii = hjj.

3. Curvature estimates

In this section, we give the proof of Theorem 1.2, that is, we prove that the
principal curvatures have uniform bounds.

From (2.8), we see that there exists a positive constant C depending on
infM ρ and ∥ρ∥C1 such that

1

C
≤ inf

M
u ≤ u ≤ sup

M
u ≤ C.

Let κmax be the largest principal curvature. Since λ(η) ∈ Γ ⊂ Γ1, we have

N∑
i=1

ηii = (n− 1)H > 0.

It suffices to prove κmax is uniformly bounded from above. We consider the
following auxiliary function

Q = log κmax − log(u− a) +
A

2
|X|2,
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where a = 1
2 infM u. Suppose that Q achieves its maximum value at a point

X0. We choose a local orthonormal frame {e1, . . . , en} near X0 such that

hij = hiiδij , h11 ≥ · · · ≥ hnn, at X0.

Recalling ηij = Hδij−hij , we have ηij =
(∑

k ̸=i hkk
)
δij . Define a new function

Q̃ near X0 by

Q̃ = log h11 − log(u− a) +
A

2
|X|2.

Obviously, Q̃ achieves its maximum value at X0. From now on, all calculations
will be done at X0. Hence

(3.1) Q̃i =
h11i
h11

− ui
u− a

+A⟨X, ei⟩ = 0,

and

0 ≥ GijQ̃ij = Gij

(
h11ij
h11

− h11ih11j
h211

)
−Gij

(
uij
u− a

− uiuj
(u− a)2

)
+A

n∑
i=1

Gii −AuGijhij .(3.2)

Using (2.5) gives that

h11ij = hij11 + him
(
hj1h1m − hjmh11

)
+ h1m

(
hijh1m − hjmh1i

)
,

which means that

(3.3) Gijh11ij = Gijhij11 +Gijhijh
2
11 −Giih2iih11.

Differentiating Eq. (2.9) with respect to e1 twice, we obtain

Gijhij1 = ψ1,(3.4)

Gijhij11 = −Gij,mlhij1hml1 + ψ11.(3.5)

Direct calculation yields that

ψ1 =
(
dXψ

)
(e1) + h11

(
dνψ

)
(e1) ≥ −C − Ch11,(3.6)

ψ11 =
(
dXXψ

)
(e1, e1) + 2h11

(
dXνψ

)
(e1, e1)

− h11
(
dXψ

)
(ν) + h211

(
dννψ

)
(e1, e1)

+

n∑
i=1

h11i
(
dνψ

)
(ei) + h211

(
dνψ

)
(ν)

≥
n∑

i=1

h11i
(
dνψ

)
(ei)− h211C.(3.7)

Combined (3.3), (3.5) and (3.7), we have

Gijh11ij
h11
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= −Gij,ml hij1hml1

h11
+
ψ11

h11
+Gijhijh11 −Giih2ii

≥ −Gij,ml hij1hml1

h11
+Gijhijh11 −Giih2ii +

n∑
i=1

h11i
h11

(
dνψ

)
(ei)− h11C.(3.8)

Thus (2.1), (2.2) and Codazzi formula gives that

(3.9) −Gij uij
u− a

= − 1

u− a

n∑
k=1

Gijhijk⟨X, ek⟩ −
1

u− a
Gijhij +

u

u− a
Giih2ii.

Taking (3.4) and (3.6) into (3.9), we have

−Gij uij
u− a

≥ − 1

u− a

n∑
i=1

hii
(
dνψ

)
(ei)⟨X, ei⟩+

u

u− a
Giih2ii

− 1

u− a
Gijhij − C.(3.10)

From (3.1) it follows that

h11i
h11

− hii⟨X, ei⟩
u− a

= −A⟨X, ei⟩,

which implies that

(3.11)
h11i
h11

(
dνψ

)
(ei)−

hii⟨X, ei⟩
(
dνψ

)
(ei)

u− a
≥ −AC.

Substituting (3.8), (3.10) and (3.11) into (3.2), we find

0 ≥ a

u− a
Giih2ii +Gij uiuj

(u− a)2
+A

n∑
i=1

Gii +
(
h11 −

1

u− a
−Au

)
Gijhij

− h11C − CA− 1

h11
Gij,klhij1hkl1 −Gij h11ih11j

h211
.(3.12)

We now consider two cases.
Case 1. There is a positive constant θ > 0 to be chosen later such that

h22 > θh11 or hnn < −θh11. From (3.1) it follows that

Gij h11ih11j
h211

= Gij
( ui
u− a

−A⟨X, ei⟩
)( uj
u− a

−A⟨X, ej⟩
)

≤ (1 + ϵ)Gij uiuj
(u− a)2

+ (1 +
1

ϵ
)A2Gij⟨X, ei⟩⟨X, ej⟩

≤ (1 + ϵ)Gij uiuj
(u− a)2

+
CA2

ϵ
Gij⟨X, ei⟩⟨X, ej⟩.(3.13)

Choosing ϵ = a2

4ρ2
max

, we see that

ϵGij uiuj
(u− a)2

= εGij hiihjj⟨X, ei⟩⟨X, ej⟩
(u− a)2
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≤ a

4(u− a)
Giih2ii.(3.14)

The concavity of G tells us

(3.15) − 1

h11
Gij,klhij1hkl1 ≥ 0.

Putting (3.13), (3.14) and (3.15) into (3.12), we obtain

0 ≥ a

2(u− a)
Giih2ii +

(
h11 −

1

u− a
−Au

)
Gijhij

− h11C − CA+ (A− CA2)

n∑
i=1

Gii

≥ a

2(u− a)

(
G22h222 +Gnnh2nn

)
+

(
h11 −

1

u− a
−Au

)
Gijhij

− h11C − CA+ (A− CA2)

n∑
i=1

Gii.(3.16)

From (1.8) and (1.14) it follows that
n∑

i=1

fiλi ≥ 0.

Combining this with (4) in Lemma 2.1, we have

(3.17) Gijhij = F ijηij =

n∑
i=1

fiηii ≥ 0.

From (3) in Lemma 2.1, we get

G22 = F 11 + F 33 + · · ·+ Fnn

≥ 1

2
F 11 +

1

2
F 22 + F 33 + · · ·+ Fnn

≥ 1

2

n∑
i=1

F ii ≥ 1

2(n− 1)

n∑
i=1

Gii,(3.18)

(3.19) Gnn ≥ 1

n

n∑
i=1

Gii.

From this we see that in Case 1

(3.20)
a

2(u− a)

(
G22h222 +Gnnh2nn

)
≥ θ2a

4n(u− a)
h211

n∑
i=1

Gii.

Without loss of generality, we have

h11 ≥ max

{
1

u− a
+Au,

√
8n(u− a)

a
C
A

θ

}
,
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then

(3.21)
(
h11 −

1

u− a
−Au

)
Gijhij ≥ 0,

(3.22)
θ2a

8n(u− a)
h211

n∑
i=1

Gii + (A− CA2)

n∑
i=1

Gii ≥ 0.

Using (3.16), (3.21) and (3.22), we obtain

(3.23) 0 ≥ θ2a

8n(u− a)
h211

n∑
i=1

Gii − Ch11 − CA.

Similar to the conditions (11) and (12) in [4], from (1.13) it follows that

(3.24)

n∑
i=1

Gii = (n− 1)

n∑
i=1

F ii = (n− 1)

n∑
i=1

fi ≥ C0

for some constant C0 > 0. From (3.23) and (3.24), we find

0 ≥ θ2aC0

8n(u− a)
h211 − Ch11 − CA.

Therefore we have

κmax ≤ C.

Case 2. We now assume that |hii| ≤ θh11 for all i = 2, . . . , n. Divide the
indices {1, 2, . . . , n} into two cases

I = {i |Gii ≤ 4G11}, J = {i |Gii > 4G11},

where Gii is evaluated at X0. Similar to (3.13), we have∑
i∈I

Gii |h11i|2

h211
=

∑
i∈I

Gii
( ui
u− a

−A⟨X, ei⟩
)2

≤ (1 + ϵ)
∑
i∈I

Gii |ui|2

(u− a)2
+
CA2

ϵ

∑
i∈I

Gii⟨X, ei⟩2

≤ (1 + ϵ)
∑
i∈I

Gii |ui|2

(u− a)2
+
CA2

ϵ
G11.(3.25)

From ϵ = a2

4ρ2
max

, we get

(3.26) ϵ
∑
i∈I

Gii |ui|2

(u− a)2
= ϵ

∑
i∈I

Giih
2
ii|⟨X, ei⟩|2

(u− a)2
≤ a

4(u− a)
Giih2ii.

Without loss of generality, we assume that

h211 ≥ 4(u− a)

a
CA2,
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then

(3.27) CA2G11 ≤ a

4(u− a)
Giih2ii.

Substitute (3.26) and (3.27) into (3.25)

(3.28)
∑
i∈I

Gii |h11i|2

h211
≤ Gii |ui|2

(u− a)2
+

a

2(u− a)
Giih2ii.

It follows from the concave of G and Lemma 2.2 that

(3.29) − 1

h11
Gij,klhij1hkl1 ≥ 2

h11

Gii −G11

h11 − hii
h211i.

We need to show
2

h11

Gii −G11

h11 − hii
≥ Gii

h211
, i ∈ J,

which is equivalent to

(3.30) Giih11 +Giihii ≥ 2G11h11, i ∈ J.

For i ∈ J , Gii > 4G11. (3.30) can be obtained if we can show

(3.31) 4G11h11 + 4G11hii ≥ 2G11h11, i ∈ J.

If hii ≥ 0, (3.31) holds obviously. If hii < 0, then hii ≥ −θh11 by our assump-
tion of Case 2. We find that (3.31) also holds if θ ≤ 1

2 . Therefore

(3.32) − 1

h11
Gij,klhij1hkl1 ≥

∑
i∈J

Giih
2
11i

h211
.

Inserting (3.28) and (3.32) into (3.12), we have

0 ≥ a

2(u− a)
Giih2ii +A

n∑
i=1

Gii − h11C − CA.(3.33)

Using (1.14) yields that

n∑
i=1

Gii = (n− 1)

n∑
i=1

F ii ≥ (n− 1)c0h11.

Choosing A sufficiently large, we obtain

A

2

n∑
i=1

Gii − h11C ≥ 0.

Combining this and (3.33), we have

κmax ≤ C.
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4. Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3. To obtain a solution to
Eq. (1.5) by the continuity method, we need to derive C0 and C1 estimates.

Let us consider a family of functions for t ∈ [0, 1]

(4.1) ψt = tψ(X, ν)+(1−t)
(
f
(
(n− 1)1

)
|X|

+ε

(
f
(
(n− 1)1

)
|X|

−f
(
(n−1)1

)))
,

where the constant ε is small sufficiently such that

ψ0 < min
r1≤ρ≤r2

(
f
(
(n− 1)1

)
ρ

+ ε

(
f
(
(n− 1)1

)
ρ

− f
(
(n− 1)1

)))
.

Then we have by (1.12)

ψ0 ≤ min
0≤t≤1

ψt(X, ν).

From concavity of f we see that for 0 ≤ p ≤ 1,

f
(
pλ+ (1− p)µ

)
≥ pf

(
λ
)
+ (1− p)f

(
µ
)
, λ, µ ∈ Γ.

Let µ→ 0, then we have

(4.2) f
(
pλ

)
≥ pf

(
λ
)
.

When p = r1 and λ = (n−1)1
r1

in (4.2), we obtain

(4.3)
f
(
(n− 1)1

)
r1

≥ f
( (n− 1)1

r1

)
.

When p = 1
r2

and λ = (n− 1)1 in (4.2), we get

(4.4) f
( (n− 1)1

r2

)
≥
f
(
(n− 1)1

)
r2

.

From (4.3) and (4.4) it follows that the function ψt(X, ν) satisfies (1.9) and
(1.10) with strict inequalities.

To prove Theorem 1.3, we consider the following family of equations

(4.5) f
(
λ(η)

)
= ψt(X, ν), 0 ≤ t ≤ 1.

Now, we prove that the solutions of Eq. (4.5) have uniform C0 bounds.

Theorem 4.1. Let M be a closed star-shaped Γ-convex hypersurface satisfying
the curvature Eq. (4.5). Suppose that f and ψ satisfy (1.6)-(1.10), (1.12)-(1.13).
Then

r1 < ρ(x) < r2 ∀x ∈ Sn.

Proof. Suppose that ρ(x) attains its maximum at x0 ∈ Sn and ρ(x0) = r2.
Then at x0 we have ∇ρ = 0 and κi ≥ 1

r2
for each principal curvature. From

(2.7) we get

hij(x0) = gikhkj =
1

r2
δij −

ρij(x0)

ρ2(x0)
≥ 1

r2
δij .



368 J. ZHOU

It follows that

λ(η) ≥ n− 1

r2
1,

which means that

f
(
λ(η)

)
≥ f

(n− 1

r2
1
)
.

On the other hand, the unit outer normal vector ν = X
|X| at x0 and ψt satisfies

(1.10) with strict inequality for 0 ≤ t < 1. Then

f
(n− 1

r2
1
)
> ψt(X,

X

|X|
) = ψt(X, ν) = f

(
λ(η)

)
,

which is a contradiction. Hence ρ(x) < r2. Similarly, we can prove ρ(x) >
r1. □

Now, we prove the following uniqueness result.

Proposition 4.2. For t = 0, there exists the unique solution ρ ≡ 1 to Eq. (4.5),
namely, M = Sn.

Proof. Let X = ρx be a solution of Eq. (4.5) for t = 0. Assume the function ρ
achieves its maximum ρmax at x0 ∈ Sn, then at x0 ∈ Sn

λ(η) ≥ n− 1

ρmax
1,

which derives that

(4.6) f
(
λ(η)

)
≥ f

(n− 1

ρmax
1
)
≥
f
(
(n− 1)1

)
ρmax

.

From (4.5), we obtain

(4.7) f
(
λ(η)

)
=

(
f
(
(n− 1)1

)
ρmax

+ ε

(
f
(
(n− 1)1

)
ρmax

− f
(
(n− 1)1

)))
.

Combining (4.7) with (4.6),

f
(
(n− 1)1

)
ρmax

− f
(
(n− 1)1

)
≥ 0,

which gives

ρmax ≤ 1.

Similarly,

ρmin ≥ 1.

Thus, ρ = 1 is the unique solution of Eq. (4.5) for t = 0. □

Now, we establish gradient estimates for the solutions of Eq. (4.5).
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Theorem 4.3. Let M be a closed star-shaped Γ-convex hypersurface satisfying
Eq. (1.5). Suppose that f and ψ satisfy (1.6)-(1.8), (1.11)-(1.13). Then

(4.8) max
Sn

∣∣∇ρ∣∣ ≤ C,

where C is a constant depending on n,
∣∣ρ∣∣

C0 and
∣∣ψ∣∣

C2 .

Proof. According to (2.8), it is sufficient to get a positive lower bound of u.
We consider the following auxiliary function

φ = − log u+ γ(|X|2),
where γ(·) is a positive function will be determined later. Assume X0 is the
maximum value point of φ. If X is parallel to ν at X0, then

u(X0) = ⟨X, ν⟩ = ρ(X0) ≥ inf
M
ρ > r1.

Therefore,
− log u+ γ(|X|2) ≤ − log u(X0) + γ(|X0|2),

which means that u has a positive lower bound. If X is not parallel to ν at X0,
we can choose a local orthonormal frame {e1, . . . , en} near X0 such that

⟨X, e1⟩ ≠ 0, ⟨X, ei⟩ = 0, i ≥ 2,

which yields that
X = ⟨X, e1⟩e1 + ⟨X, ν⟩ν.

From now on, all calculations will be done at X0. Then we have

(4.9) 0 = φi = −ui
u

+ 2γ′⟨X, ei⟩ = −hi1⟨X, e1⟩
u

+ 2γ′⟨X, ei⟩,

which yields that

(4.10) h11 = 2uγ′, h1i = 0, i ≥ 2.

Therefore, after rotating {e2, . . . , en}, we can assume that hij is diagonal. Ap-
plying the maximum principle,

0 ≥ Gijφij

= −G
ijuij
u

+Gij uiuj
u2

+ 4γ′′Gij⟨X, ei⟩⟨X, ej⟩+ 2γ′
n∑

i=1

Gii − 2uγ′Gijhij

= −G
ijuij
u

+ 4
(
(γ′)2 + γ′′

)
G11⟨X, e1⟩2 + 2γ′

n∑
i=1

Gii − 2uγ′Gijhij .(4.11)

Using (2.1), (2.2) and (2.3) yields that

uij = hij1⟨X, e1⟩+ hij − u
n∑

k=1

hikhkj ,

which gives that

(4.12) −Gij uij
u

= −G
ijhij
u

− Gijhij1⟨X, e1⟩
u

+Gijhikhkj .
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From (3.4) and (3.6) it follows that

(4.13) −G
ijhij1⟨X, e1⟩

u
= − 1

u

((
dXψ

)
(e1)⟨X, e1⟩+ h11

(
dνψ

)
(e1)⟨X, e1⟩

)
.

From concavity of f ,

f
(
λ
)
≥ f

(
pλ

)
+ (1− p)fi

(
λ(η)

)
λi,

letting p→ 0, we have

(4.14) ψ = f
(
λ
)
≥ fiλi = F iiηii = Gijhij .

Inserting (4.12) and (4.13) into (4.11) and using (4.14), we obtain

0 ≥ 4
(
(γ′)2 + γ′′

)
G11⟨X, e1⟩2 −

1

u

(
ψ +

(
dXψ

)
(e1)⟨X, e1⟩

)
− 2γ′

(
dνψ

)
(e1)⟨X, e1⟩+Giih2ii + 2γ′

n∑
i=1

Gii − 2uγ′Gijhij .(4.15)

From (1.11), we find that

0 ≥ ∂

∂ρ

(
ρψ(X, ν)

)
= ψ + (dXψ)(⟨X, e1⟩e1 + uν)

= ψ + ⟨X, e1⟩(dXψ)(e1) + u(dXψ)(ν).(4.16)

Putting (4.16) into (4.15)

0 ≥ 4
(
(γ′)2 + γ′′

)
G11⟨X, e1⟩2 + (dXψ)(ν)

− 2γ′
(
dνψ

)
(e1)⟨X, e1⟩+ 2γ′

n∑
i=1

Gii − 2uγ′Gijhij .(4.17)

Without loss of generality, we assume that

(4.18) ⟨X, e1⟩2 ≥ 1

2
inf
M
ρ2.

Otherwise,

u2 = ⟨X, ν⟩2 = |X|2 − ⟨X, e1⟩2 ≥ 1

2
inf
M
ρ2.

Now we choose

γ(t) =
α

t
,

where α is a constant to be determined later. Since h11 = 2γ′u < 0 and∑n
i=1 ηii = (n − 1)H > 0, there exists some i = 2, . . . , n such that hii > 0.

Then η11 = H − h11 > ηii = H − hii and F
11 ≤ F ii. It follows from this and

(3.24) that

G11 = F 22 + · · ·+ F ii + · · ·+ Fnn

≥ 1

2
F 11 + · · ·+ 1

2
F ii + · · ·+ Fnn
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≥ 1

2

n∑
i=1

F ii =
1

2(n− 1)

n∑
i=1

Gii

≥ 1

2(n− 1)
C0.(4.19)

Using (3.17), we have

(4.20) −2uγ′Gijhij ≥ 0.

Substitute (4.19) and (4.20) into (4.17)

0 ≥ 2

n− 1

(α2

ρ8
+

2α

ρ6
)
|⟨X, e1⟩|2

n∑
i=1

Gii − C

n∑
i=1

Gii

− Cα

ρ4
|⟨X, e1⟩|

n∑
i=1

Gii − Cα

ρ4

n∑
i=1

Gii.(4.21)

Choose α sufficiently large, then we obtain a contradiction from (4.21). There-
fore,

u2 ≥ 1

2
inf
M
ρ2. □

Using Theorem 4.1, Proposition 4.2, Theorem 4.3 and Theorem 1.2, we get
C2 estimates. Higher order estimates follows from Evans-Krylov theory [11].
Applying the similar argument of [4], we obtain the existence and uniqueness
of solution to Eq. (1.5).

5. Proof of Theorem 1.4

In this section, we establish the interior curvature bounds for solutions of
Eq. (1.16). Let

(5.1) G(hij) = F (ηij) = f
(
λ(η)

)
= ψ(X, ν).

From Remark 1.2 in [31], we know that ϕ − u ≥ c(Ω′) > 0 for any Ω′ ⊂⊂ Ω.
Without loss of generality, we may assume that u ∈ C4(Ω) in view of replacing
u by u + ϵ and Ω by {x ∈ Ω : u(x) + ϵ < ϕ(x)} for small enough ϵ > 0. We
consider the auxiliary function

H̃(X, ξ) =
hξξ(ϕ− u)β

⟨ν,En+1⟩ − a
e

A
2 |X|2 ,

where A and β are constants to be determined later, En+1 = (0, . . . , 0, 1) and

a = 1
2 inf

Ω
⟨ν,En+1⟩. Suppose H̃(X, ξ) attains its maximum at an interior point

x0 ∈ Ω, in a direction ξ0 ∈ TX(x0)M which we may take to be e1. Choose the
coordinates such that (hij) is diagonal at (x0, u(x0)) and

h11 ≥ · · · ≥ hnn.
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Therefore the function

H = log h11 + β log(ϕ− u)− log
(
⟨ν,En+1⟩ − a

)
+
A

2
|X|2

has a maximum at x0. From now on, all the calculations will be done at x0.
Differentiating H once gives

(5.2) 0 = Hi =
h11i
h11

+ β
(ϕ− u)i
ϕ− u

− ⟨ν,En+1⟩i
⟨ν,En+1⟩ − a

+A⟨X, ei⟩.

Differentiating H twice, we have

0 ≥ GijHij

= Gij
(h11ij
h11

− h11ih11j
h211

)
+ βGij

( (ϕ− u)ij
ϕ− u

− (ϕ− u)i(ϕ− u)j
(ϕ− u)2

)
−Gij

( ⟨ν,En+1⟩ij
⟨ν,En+1⟩ − a

− ⟨ν,En+1⟩i⟨ν,En+1⟩j
(⟨ν,En+1⟩ − a)2

)
+A

n∑
i=1

Gii −AGijhij⟨X, ν⟩.(5.3)

By (3.7) and (3.8), we have

Gijh11ij
h11

≥−Gij,ml hij1hml1

h11
+Gijhijh11 −Giih2ii

+

n∑
i=1

h11i
h11

(
dνψ

)
(ei)− h11C − C.(5.4)

Direct calculation yields that

⟨ν,En+1⟩ij = hijk⟨ek, En+1⟩ − hikhkj⟨ν,En+1⟩.

Combining with (3.4) and (3.6), we obtain

−Gij ⟨ν,En+1⟩ij
⟨ν,En+1⟩ − a

≥ ⟨ν,En+1⟩
⟨ν,En+1⟩ − a

Gijhikhkj

−

n∑
i=1

hii(dνψ)(ei)⟨ei, En+1⟩

⟨ν,En+1⟩ − a
− C.(5.5)

Using Gauss’s formula and the assumption that ϕ is affine, we get

Gij (ϕ− u)ij
ϕ− u

= −dXϕ(ν)Gijhij +Gijhij⟨ν,En+1⟩.(5.6)

Applying (5.2) gives that

−

n∑
i=1

hii(dνψ)(ei)⟨ei, En+1⟩

⟨ν,En+1⟩ − a
+

n∑
i=1

h11i
h11

(
dνψ

)
(ei)
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= −
n∑

i=1

(
β
(ϕ− u)i
ϕ− u

+A⟨X, ei⟩
)
(dνψ)(ei)

≥ − βC

ϕ− u
−AC.(5.7)

Inserting (5.4)-(5.7) into (5.3) yields

0 ≥ −Gij,ml hij1hml1

h11
−Gij h11ih11j

h211
− βGij (ϕ− u)i(ϕ− u)j

(ϕ− u)2

+Gijhij

(
h11 − β

dXϕ(ν)

ϕ− u
+ β

⟨ν,En+1⟩
ϕ− u

−A⟨X, ν⟩
)

+Gij ⟨ν,En+1⟩i⟨ν,En+1⟩j
(⟨ν,En+1⟩ − a)2

+
a

⟨ν,En+1⟩ − a
Giih2ii +A

n∑
i=1

Gii

− Ch11 −
βC

ϕ− u
−AC − C.(5.8)

We now consider two cases.
Case 1. There is a positive constant θ > 0 to be chosen later such that

h22 > θh11 or hnn < −θh11. From (5.2) it follows that

Gij h11ih11j
h211

= Gij

(
β
(ϕ− u)i
ϕ− u

− ⟨ν,En+1⟩i
⟨ν,En+1⟩ − a

+A⟨X, ei⟩
)

(
β
(ϕ− u)j
ϕ− u

− ⟨ν,En+1⟩j
⟨ν,En+1⟩ − a

+A⟨X, ej⟩
)

≤ (1 + γ)Gij ⟨ν,En+1⟩i⟨ν,En+1⟩j(
⟨ν,En+1⟩ − a

)2 + β2(2 +
2

γ
)Gij (ϕ− u)i(ϕ− u)j

(ϕ− u)2

+A2(2 +
2

γ
)Gij⟨X, ei⟩⟨X, ej⟩.(5.9)

Choosing γ = a2

2 , we see that

γGij ⟨ν,En+1⟩i⟨ν,En+1⟩j(
⟨ν,En+1⟩ − a

)2 = γGij hii⟨ei, En+1⟩hjj⟨ej , En+1⟩(
⟨ν,En+1⟩ − a

)2
≤ a

2(⟨ν,En+1⟩ − a)
Giih2ii(5.10)

and

β2(2 +
2

γ
)Gij (ϕ− u)i(ϕ− u)j

(ϕ− u)2
+A2(2 +

2

γ
)Gij⟨X, ei⟩⟨X, ej⟩

≤ β2C

(ϕ− u)2

n∑
i=1

Gii +A2C

n∑
i=1

Gii.(5.11)
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It follows from the concavity of G

(5.12) − 1

h11
Gij,mlhij1hml1 ≥ 0.

Putting (5.9)-(5.12) into (5.8), we obtain

0 ≥
(
− β2C

(ϕ− u)2
− βC

(ϕ− u)2
−A2C+A

) n∑
i=1

Gii +
a

2(⟨ν,En+1⟩ − a)
Giih2ii

+Gijhij

(
h11 − β

dXϕ(ν)

ϕ− u
+β

⟨ν,En+1⟩
ϕ− u

−A⟨X, ν⟩
)

− Ch11 −
βC

ϕ− u
−AC − C.(5.13)

From (3.18) and (3.19), we get

G22 ≥ 1

2(n− 1)

n∑
i=1

Gii, Gnn ≥ 1

n

n∑
i=1

Gii.(5.14)

By the assumption of Case 1 we find that

(5.15)
a

2(⟨ν,En+1⟩ − a)

(
G22h222 +Gnnh2nn

)
≥ θ2a

4n(⟨ν,En+1⟩ − a)
h211

n∑
i=1

Gii.

Using the fact Gijhij ≥ 0 yields that

(5.16) Gijhij

(
h11 − β

dXϕ(ν)

ϕ− u
+ β

⟨ν,En+1⟩
ϕ− u

−A⟨X, ν⟩
)

≥ 0,

provided that (ϕ − u)h11 is sufficiently large. Insert (5.15) and (5.16) into
(5.13),

0 ≥ θ2a(ϕ− u)2h211
8n(⟨ν,En+1⟩ − a)

n∑
i=1

Gii −
(
β2C +A2C(ϕ− u)2

) n∑
i=1

Gii

+
θ2a(ϕ− u)2h211

8n(⟨ν,En+1⟩ − a)

n∑
i=1

Gii − C(ϕ− u)h11 − βC −AC

≥ θ2a(ϕ− u)2h211
8n(⟨ν,En+1⟩ − a)

n∑
i=1

Gii − C(ϕ− u)h11 − βC −AC,(5.17)

provided that (ϕ−u)2h211 is sufficiently large. From (3.24) and (5.17) we obtain

0 ≥ θ2aC0(ϕ− u)2h211
8n(⟨ν,En+1⟩ − a)

− C(ϕ− u)h11 − βC −AC.

Therefore,

h11 ≤ C

ϕ− u
.
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Case 2. We now assume that |hii| ≤ θh11 for all i = 2, . . . , n. Divide the
indices {1, 2, . . . , n} into two cases

I = {i |Gii ≤ 4G11}, J = {i |Gii > 4G11},

where Gii is evaluated at X0. Similar to (5.9), we have∑
i∈I

Gij h11ih11j
h211

≤ (1+ε)
∑
i∈I

Gij ⟨ν,En+1⟩i⟨ν,En+1⟩j(
⟨ν,En+1⟩ − a

)2 +β2(2+
2

ε
)
∑
i∈I

Gij (ϕ− u)iϕ− u)j
(ϕ− u)2

+A2(2 +
2

ε
)
∑
i∈I

Gij⟨X, ei⟩⟨X, ej⟩

≤ (1 + ε)
∑
i∈I

Gij ⟨ν,En+1⟩i⟨ν,En+1⟩j(
⟨ν,En+1⟩ − a

)2 +
Cβ2

ε(ϕ− u)2
G11 +

A2C

ε
G11.(5.18)

By (5.2) we have

βGii (ϕ− u)2i
(ϕ− u)2

=
∑
i∈J

Gii

β

(
h11i
h11

− ⟨ν,En+1⟩i
⟨ν,En+1⟩ − a

+A⟨X, ei⟩
)2

+ β
∑
i∈I

Gii (ϕ− u)2i
(ϕ− u)2

≤
∑
i∈J

2 + 2
ε

β
Giih

2
11i

h211
+

1 + ε

β

Giih2ii
(⟨ν,En+1⟩ − a)2

+
2 + 2

ε

β
A2C

n∑
i=1

Gii +
βC

(ϕ− u)2
G11.(5.19)

Note that 2a = inf
Ω
⟨ν,En+1⟩ ≤ 1. Fixing ε = a2

4 and assuming that

β ≥ β1 :=
8

a2
,

we obtain

(5.20)
a

⟨ν,En+1⟩ − a
−

ε+ 1
β + ε

β

(⟨ν,En+1⟩ − a)2
≥ a

2
.

Take (5.18)-(5.20) into (5.8),

0 ≥ −Gij,ml hij1hml1

h11
− (1 +

C

β
)
∑
i∈J

Giih
2
11i

h211

+Gijhij

(
h11 − β

dXϕ(ν)

ϕ− u
+ β

⟨ν,En+1⟩
ϕ− u

−A⟨X, ν⟩
)
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+
a

2
Giih2ii −

(
Cβ2

(ϕ− u)2
+

βC

(ϕ− u)2
+A2C

)
G11

+A

n∑
i=1

Gii − A2C

β

n∑
i=1

Gii − Ch11 −
βC

ϕ− u
−AC − C.(5.21)

Without loss of generality, we assume that

(ϕ−u)h11 ≥ max

{
βdXϕ(ν) +A⟨X, ν⟩(ϕ− u),

√
2

a

(
Cβ2 + Cβ +A2C(ϕ− u)2

)}
,

then

0 ≥ −Gij,ml hij1hml1

h11
− (1 +

C

β
)
∑
i∈J

Giih
2
11i

h211

+A

n∑
i=1

Gii − A2C

β

n∑
i=1

Gii − Ch11 −
βC

ϕ− u
−AC − C.(5.22)

It follows from the concave of G and Lemma 2.2 that

(5.23) − 1

h11
Gij,mlhij1hml1 ≥ 2

h11

Gii −G11

h11 − hii
h211i.

We need to show

2

h11

Gii −G11

h11 − hii
≥ (1 +

C

β
)
Gii

h211
, i ∈ J,

which is equivalent to

(5.24) (1− C

β
)Giih11 + (1 +

C

β
)Giihii ≥ 2G11h11, i ∈ J,

provided β is sufficiently large. For i ∈ J , Gii > 4G11. (5.24) can be obtained
if we can show

(5.25) (1− 2C

β
)G11h11 + 2(1 +

C

β
)G11hii ≥ 0, i ∈ J.

Assuming that β ≥ β2 := 5C. If hii ≥ 0, (5.25) holds obviously; if hii < 0,
then hii ≥ −θh11 by the assumption of Case 2. We find that (5.25) also holds
if θ ≤ 1

4 . Therefore,

0 ≥ A

n∑
i=1

Gii − A2C

β

n∑
i=1

Gii − Ch11 −
βC

ϕ− u
−AC − C.(5.26)

Without loss of generality, we assume that β ≥ max{β1, β2, 2AC}. It follows
that

0 ≥ A

2

n∑
i=1

Gii − Ch11 −
βC

ϕ− u
−AC − C.(5.27)
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Use (1.14), then we have
n∑

i=1

Gii = (n− 1)

n∑
i=1

F ii ≥ (n− 1)c0h11.

Choosing A sufficiently large, we obtain

A

4

n∑
i=1

Gii − h11C ≥ 0.

From this and (5.27), we obtain

h11 ≤ C

(ϕ− u)
.

Combining Case 1 and Case 2, H̃(X, ξ) satisfies a similar bound. The curva-
ture bound of Theorem 1.4 follows.
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