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WAVELET CHARACTERIZATIONS OF

VARIABLE HARDY-LORENTZ SPACES

Yao He

Abstract. In this paper, let q ∈ (0, 1]. We establish the boundedness of
intrinsic g-functions from the Hardy-Lorentz spaces with variable expo-

nent Hp(·),q(Rn) into Lorentz spaces with variable exponent Lp(·),q(Rn).

Then, for any q ∈ (0, 1], via some estimates on a discrete Littlewood-
Paley g-function and a Peetre-type maximal function, we obtain several

equivalent characterizations of Hp(·),q(Rn) in terms of wavelets.

1. Introduction

As a generalization of Lp (Rn), the variable Lebesgue space Lp(·) (Rn) was
introduced by Orlicz [22] in 1930’s. Lorentz spaces on Rn were studied by
Lorentz in the early 1950’s. Lorentz spaces, as generalizations of Lp (Rn), are
known to be the intermediate spaces of Lebesgue spaces in the real interpolation
method; see [1, 18]. Over the past couple of years, the study of Hardy-Lorentz
spaces has always been an interesting topic. For example, the real interpolation
of the Hardy-Lorentz space Hp,q (Rn) was investigated by Fefferman, Riviére,
and Sagher [4]; the space H1,∞ (Rn) was considered by Fefferman and Soria
[5].

Nowadays, due to the development of variable Lebesgue spaces, there has
been a lot of research on the study of Hardy spaces with variable exponents in
harmonic analysis. A major breakthrough on Lebesgue spaces with variable ex-
ponent is that under some regularity assumptions on p(·), the Hardy-Littlewood
maximal operator is bounded on Lp(·) (Rn) [3]. Moreover, Nakai and Sawano
[21] made a lot of progress on variable Hardy spaces Hp(·) (Rn). They estab-
lished the atomic decompositions and the dual spaces ofHp(·) (Rn) in [3]. Later,
Sawano [23] extended the atomic characterization of Hp(·) (Rn) and improved
the corresponding results in [21]. Recently, Jiao et al. [14] established some real-
variable characterizations of variable Hardy-Lorentz spaces. As applications of
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the atomic decompositions, they developed a theory of real interpolation and
formulated the dual space of the variable Hardy-Lorentz space with 0 < p− ≤
p+ ≤ 1 and 0 < q <∞.

In the 1990s, the wavelet theory was established involving different Hardy-
type spaces. Precisely, several equivalent wavelet characterizations of H1 (Rn)
were established by Meyer [20]; some equivalent wavelet characterizations of the
weak Hardy space H1,∞ (Rn) were studied by Liu [19]; a wavelet area integral
characterization of the weighted Hardy space Hp

ω (Rn) for any p ∈ (0, 1] was
established by Wu [25]; and independently, via the vector-valued Calderón-
Zygmund theory, a characterization of Hp

ω (Rn) for p ∈ (0, 1] in terms of
wavelets without compact supports was established by Garćıa-Cuerva and
Martell [10]. Later, the wavelet inequalities of Lebesgue spaces with variable
exponents were introduced by Kopaliani [16] and Izuki [12] independently. In
addition, the wavelet characterization for weighted Lebesgue spaces with vari-
able exponents was established by Izuki, Nakai, and Sawano [13].

Recently, via wavelets, several equivalent characterizations of the Musielak-
Orlicz Hardy space Hφ (Rn) were established by Fu and Yang [8]. Later, via
wavelets, several equivalent characterizations of Hp(·) (Rn) were established by
Fu [7], which extends the wavelet characterizations of the classical Hardy space
in [20, Theorems 5.1, 6.4]. In addition, when (X , d, µ) is a metric measure
space of homogeneous type in the sense of R. R. Coifman and G. Weiss and
H1
at(X ) is the atomic Hardy space, Fu and Yang [9] established several equiv-

alent characterizations of H1
at(X ) in terms of wavelets.

Motivated by the above results, especially by [8, 14], we establish several
equivalent characterizations ofHp(·),q (Rn) in terms of wavelets where q ∈ (0, 1].

We describe how we organize this paper. In Section 2, we first recall some
known notions and notation. Then, recall the atomic characterizations of
Hp(·),q (Rn) from [14, Theorem 5.4] (see Lemma 2.12 below). In Section 3, for
any q ∈ (0, 1], we establish the boundedness of intrinsic g-functions from the
Hardy-Lorentz spaces with variable exponent Hp(·),q(Rn) into Lorentz spaces
with variable exponent Lp(·),q(Rn) (see Theorem 3.3 below), and get some es-
timates on a discrete Littlewood-Paley g-function and a Peetre-type maximal
function (see Propositions 3.5 and 3.6, respectively, below). In Section 4, we
prove Theorem 4.1. Via the estimate on the Peetre-type maximal function,
the wavelet characterizations of Lebesgue spaces from [20] and some standard
arguments on the wavelet characterizations of the classical Hardy spaces, we
complete the proof of Theorem 4.1.
Notation. In this paper, we denote by C a positive constant which is inde-
pendent of the main parameters, but it may vary from line to line. We also use
C(α,β,...) to denote a positive constant depending on the parameters α, β, . . ..
The symbol f ≲ g means f ≤ Cg for a positive constant C, and f ∼ g amounts
to f ≳ g ≳ f . For any a ∈ R, the symbol ⌊a⌋ denotes the largest integer m
such that m ≤ a. Let N := {1, 2, . . .}, Z+ := N∪{0} and Zn+ := (Z+)

n
. For any
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p ∈ [1,∞], p′ denotes its conjugate number, namely, 1/p + 1/p′ = 1. For any
subset E of Rn, we use χE to denote its characteristic function. Moreover, ⟨·, ·⟩
and (·, ·)L2(Rn) represent the duality relation and the L2 (Rn) inner product,
respectively.

2. Preliminaries

In this section, we first recall some notions and notation. For any x ∈ Rn
and r ∈ (0,∞), let

B(x, r) := {y ∈ Rn : |y − x| < r}
denote the open ball. Let A (Rn) be the set of all Lebesgue measurable func-
tions on Rn.

A measurable function p(·) : Rn → (0,∞) is called a variable exponent.
Denote by P (Rn) the collection of all variable exponents p(·) satisfying

0 < p− := ess inf
x∈Rn

p(x) ≤ ess sup
x∈Rn

p(x) =: p+ <∞.

In the following, let
p = min {p−, 1} .

Definition 2.1 ([2, Definition 2.16]). Let p(·) ∈ P (Rn). Then the Lebesgue
space with variable exponent is defined by setting

Lp(·) (Rn) :=
{
f ∈ A (Rn) : ∥f∥Lp(·)(Rn) <∞

}
,

where

∥f∥Lp(·)(Rn) :=inf

{
λ ∈ (0,∞) : ρp(·)

(
|f |
λ

)
⩽ 1

}
, ρp(·)(f) :=

∫
Rn

|f(x)|p(x)dx.

Definition 2.2 ([15, Definition 2.2]). Let p(·) ∈ P (Rn) and let 0 < q ≤ ∞.
Then the Lorentz space with variable exponent is defined by setting

Lp(·),q (Rn) :=
{
f ∈ A (Rn) : ∥f∥Lp(·),q(Rn) <∞

}
,

where

∥f∥Lp(·)q(Rn) :=


(∫∞

0
λq
∥∥χ{x∈Rn:|f(x)|>λ}

∥∥q
Lp(·)(Rn)

dλ
λ

)1/q
, if 0 < q <∞,

supλ>0 λ
∥∥χ{x∈Rn:|f(x)|>λ}

∥∥
Lp(·)(Rn)

, if q = ∞.

Lemma 2.3 ([14, Lemma 2.8]). Let p(·) ∈ P (Rn) and let 0 < q ≤ ∞. Then,
for all f ∈ Lp(·),q (Rn) and s ∈ (0,∞), it holds true that

∥|f |s∥Lp(·),q(Rn) = ∥f∥sLsp(·),sq(Rn).

A function p(·) ∈ P (Rn) is said to satisfy the globally log-Hölder continuous
condition, denoted by p(·) ∈ C log (Rn), if there exist positive constants Cp(·),
C∞ and p∞ such that, for all x, y ∈ Rn,

(2.1) |p(x)− p(y)| ≤
Cp(·)

log(e+ 1/|x− y|)
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and

(2.2) |p(x)− p∞| ≤ C∞

log(e+ |x|)
.

For r ∈ (0,∞), we denote Lrloc (Rn) to be the set of all r-locally integrable
functions on Rn. Recall that the Hardy-Littlewood maximal operator M is
defined by setting, for all f ∈ L1

loc (Rn),

(2.3) M(f)(x) := sup
x∈B

1

|B|

∫
B

|f(y)|dy, x ∈ Rn,

where the supremum is taken over all balls B of Rn containing x.
We denote S (Rn) to be the space of all Schwartz functions and S′ (Rn) to

be its topological dual space equipped with the weak-∗ topology. For N ∈ N,
let

FN (Rn) :=

ψ ∈ S (Rn) :
∑

β∈Zn
+,|β|≤N

sup
x∈Rn

[
(1 + |x|)N

∣∣Dβψ(x)
∣∣] ≤ 1

 ,

where, for any β := (β1, . . . , βn) ∈ Zn+, |β| = β1 + · · · + βn and Dβ :=(
∂
∂x1

)β1

· · ·
(

∂
∂xn

)βn

. Then for all f ∈ S ′ (Rn), the radial grand maximal

function f∗N,+ of f is defined by setting, for all x ∈ Rn,

f∗N,+(x) := sup {|f ∗ ψt(x)| : t ∈ (0,∞) and ψ ∈ FN (Rn)} ,

where, for all t ∈ (0,∞) and ξ ∈ Rn, ψt(ξ) := t−nψ(ξ/t). We simply use f∗ to
denote f∗N,+.

Definition 2.4 ([14, Definition 2.14]). Let p(·) ∈ P (Rn), let 0 < q ≤ ∞ and
let N ∈

(
n
p +n+1,∞

)
be a positive integer. The variable Hardy-Lorentz space

Hp(·),q (Rn) is defined by setting

Hp(·),q (Rn) :=
{
f ∈ S′ (Rn) : ∥f∗∥Lp(·),q(Rn) <∞

}
,

equipped with the quasi-norm

∥f∥Hp(·),q(Rn) := ∥f∗∥Lp(·),q(Rn) .

We denote Ps (Rn) to be the set of all polynomials having degree at most s.
For a locally integrable function f , a ball B and a nonnegative integer s, there
exists a unique polynomial P such that for any polynomial R ∈ Ps (Rn),∫

B

(f(x)− P (x))R(x)dx = 0.

Denote this unique polynomial P by P sBf .

Definition 2.5 ([21]). Let p(·) ∈ P (Rn) and let 1 ≤ r <∞. The BMO space
BMOp(·),r (Rn) is defined by setting

BMOp(·),r (Rn) :=
{
f ∈ Lrloc (Rn) : ∥f∥BMOp(·),r(Rn) <∞

}
,
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where

∥f∥BMOp(·),r(Rn) := sup
B∈B

|B|
∥χB∥Lp(·)(Rn)

(
1

|B|

∫
B

|f(x)− P sBf(x)|
r
dx

)1/r

,

(1 ≤ r <∞)

where B is the set of all balls.

Remark 2.6. Let p(·) ∈ C log (Rn), let d be an integer satisfying

(2.4) d ⩾ dp(·) := min {d ∈ Z+ : p−(n+ 1 + d) > n} ,
and let r ∈ (max {p+, 1} ,∞] and q ∈ (0, 1]. By [14, Theorems 5.4 and 7.2], we
find that

(i)
(
Hp(·),q (Rn)

)∗
= BMOp(·),r (Rn);

(ii) f ∈Hp(·),q (Rn) if and only if f ∈
(
BMOp(·),r (Rn)

)∗
and f∗∈Lp(·),q (Rn).

Indeed, for any q ∈ (0, 1], if f ∈ Hp(·),q (Rn), then, by (i), we deduce that

f ∈
(
Hp(·),q (Rn)

)∗∗
=
(
BMOp(·),r (Rn)

)∗
.

It follows from Definition 2.4 that f∗ ∈ Lp(·),q (Rn). On the other hand, for any

q ∈ (0, 1], if f ∈
(
BMOp(·),r (Rn)

)∗
and f∗ ∈ Lp(·),q (Rn) , then, by [26, Lemma

2.8], we deduce that S (Rn) ⊂ BMOp(·),r (Rn) and hence f ∈ S′ (Rn), which,
together with Definition 2.4, implies that f ∈ Hp(·),q (Rn) .

In the following, we recall the following notion of the multiresolution analysis
on R (see [20,24] for more details).

Definition 2.7. An increasing sequence {Vj}j∈Z of closed subspaces in L2(R)
is called a multiresolution analysis (MRA) on R if

(i)
⋃
j∈Z Vj is dense in L2(R) and

⋂
j∈Z Vj = {θ}, where θ denotes the zero

function;
(ii) for any j ∈ Z and f ∈ L2(R), f ∈ Vj if and only if f

(
2−j ·

)
∈ V0;

(iii) for any k ∈ Z and f ∈ L2(R), f ∈ V0 if and only if f(· − k) ∈ V0;
(iv) there exists a function ϕ ∈ L2(R) (called father wavelet) such that

{ϕk(·)}k∈Z := {ϕ(· − k)}k∈Z forms an orthonormal basis of V0.

For any fixed s ∈ Z+, according to [24, Theorem 1.61(ii)], we choose the
father and the mother wavelets ϕ, ψ ∈ Cs+1

c (R), the set of all functions with
compact supports having continuous derivatives up to order s + 1, such that

ϕ̂(0) = (2π)−1/2 and, for any l ∈ {0, . . . , s + 1},
∫
R x

lψ(x)dx = 0, where ϕ̂
denotes the Fourier transform of ϕ; namely, for any ξ ∈ R,

ϕ̂(ξ) :=
1√
2π

∫
R
ϕ(y)e−iξydy.

In the following, we assume that

(2.5) suppϕ, suppψ ⊂ 1/2 +m(−1/2, 1/2),
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namely, x ∈ [(1−m)/2, (1+m)/2] if and only if
∣∣x− 1

2

∣∣ ⩽ m/2. Herem ∈ [1,∞)
is a positive constant independent of the main parameters involved in the whole
paper.

By the standard procedure of tensor products, we can extend the above
considerations from 1-dimension to n-dimension. More precisely, let

θ⃗n := (

n times︷ ︸︸ ︷
0, . . . , 0) and E := {0, 1}n\

{
θ⃗n

}
.

Assume that D is the set of all dyadic cubes in Rn, i.e., for any Q ∈ D, there
exist j ∈ Z+ and k := {k1, . . . , kn} ∈ Zn such that

(2.6) Q = Qj,k :=
{
x ∈ Rn : ki ≤ 2jxi < ki + 1 for any i ∈ {1, . . . , n}

}
.

Let mQ be the m dilation of Q with the same center as Q and m as in (2.5).
According to the tensor product in [20, p. 108], for any λ := (λ1, . . . , λn) ∈ E,
Q := Qj,k with k := (k1, . . . , kn) ∈ Zn, j ∈ Z, and x = (x1, . . . , xn), let

ψλQ(x) := 2jn/2ψλ1
(
2jx1 − k1

)
· · ·ψλn

(
2jxn − kn

)
,

ϕQ(x) := 2jn/2ϕ
(
2jx1 − k1

)
· · ·ϕ

(
2jxn − kn

)
,

where ψ0 := ϕ and ψ1 := ψ.
A family

{
ψλQ
}
Q∈D,λ∈E ⊂ Cs+1 (Rn) (the set of all functions having con-

tinuous derivatives up to order s + 1) is called an s-order wavelet system (see
[8, p. 6]) if

{
ψλQ
}
Q∈D,λ∈E satisfy

(i)
{
ψλQ
}
Q∈D,λ∈E forms an orthonormal basis of L2 (Rn);

(ii) ψλQ are compactly supported, namely,

suppψλQ ⊂ mQ;

(iii) there exists a positive constant C, depending on s, such that, for any
β := (β1, . . . , βn) ∈ Zn+ with |β| := β1 + · · ·+ βn ≤ s+ 1,

(2.7)
∣∣∂βψλQ(x)∣∣ ≤ C2j|β|2jn/2, ∀x ∈ Rn;

(iv) for any β := (β1, . . . , βn) ∈ Zn+ with |β| ≤ s,
∫
Rn x

βψλQ(x)dx = 0, here

and hereafter, for any x := (x1, . . . , xn) ∈ Rn, xβ := xβ1

1 · · ·xβn
n .

See more details in [20, p. 108].
Hence, for any f ∈ L2 (Rn), we find that

f =
∑
λ∈E

∑
Q∈D

(f, ψλQ)ψ
λ
Q =

∑
λ∈E

∑
(j,k)∈Z×Zn

(f, ψλj,k)ψ
λ
j,k in L2 (Rn) ,

and for any k ∈ Zn, j ∈ Z+ with Q = Qj,k ∈ D as in (2.6) and λ ∈ E,

ψλj,k := ψλQ.
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By [20, p. 142], for any λ ∈ E, we assume that there exists some set Wλ ⊂
[0, 1)n such that 0 < λ ≤

∣∣Wλ
∣∣ and c0χWλ ≤

∣∣ψλ∣∣ for some fixed positive
constants γ and c0, where

(2.8) ψλ := ψλ[0,1)n .

For every j ∈ Z, λ ∈ E, k ∈ Zn, and Q := Qj,k, let

(2.9) Wλ
j,k :=

{
x ∈ Rn : 2jx− k ∈Wλ

}
=:Wλ

Q.

Then, for each λ ∈ E, j ∈ Z and k ∈ Zn, we obtain

(2.10) Wλ
j,k ⊂ Qj,k,

∣∣Wλ
j,k

∣∣ ≥ γ |Qj,k|
and

(2.11)
∣∣ψλj,k∣∣ ≥ c0

χWλ
j,k

|Qj,k|
.

In the following, let

(2.12) Λ := {(λ, j, k) : λ ∈ E, (j, k) ∈ Z× Zn} .
Further, for any j ∈ Z, let Vj be the closed subspace of L2 (Rn) spanned by
{ϕQ}|Q|=2−jn . It is known that {Vj}j∈Z is an MRA on Rn, whose definition

extends MRA on R in Definition 2.7 (see [20, Chapter 2] for more details).
Next, we show that the wavelets belong to Campanato spaces with variable

exponent.
For any α ∈ (0, 1], s ∈ Z+, and ϵ ∈ (0,∞). Denote by C(α,ϵ),s (Rn) the

class of all functions η ∈ Cs (Rn), the set of all functions having continuous
derivatives up to order s, such that, for any ν ∈ Zn+, with |ν| ≤ s, and for any
x ∈ Rn,
(2.13) |∂νη(x)| ≤ (1 + |x|)−n−ϵ

and, for any ν ∈ Zn+, with |ν| = s, and for any x1, x2 ∈ Rn,

(2.14) |∂νη (x1)− ∂νη (x2)| ≤ |x1 − x2|α
[
(1 + |x1|)−n−ϵ + (1 + |x2|)−n−ϵ

]
.

In the following, let Cϵ,s (Rn) := C(1,ϵ),s (Rn).
The following results are [7, Proposition 1 and Corollary 2], respectively.

Proposition 2.8. Let p(·) ∈ C log (Rn) and s ∈ Z+.

(i) if α ∈ (0, 1], ε ∈ (α+ s,∞) and p− ∈ (n/(n+ α+ s), 1], then

C(α,ϵ),s (Rn) ⊂ BMOp(·),r (Rn) ;
(ii) if ε ∈ (1 + s,∞) and p− ∈ (n/(n+ 1 + s), 1], then

Cϵ,s (Rn) ⊂ BMOp(·),r (Rn) .

Corollary 2.9. Let p(·) ∈ C log (Rn), s ∈ Z+ and p− ∈ (n/(n+ 1 + s), 1].
Then, for any (λ, j, k) ∈ Λ with Λ as in (2.12), ψλj,k ∈ BMOp(·),r (Rn).

We now recall the definition of (p(·), r, s)-atom introduced in [21].
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Definition 2.10. Let p(·) ∈ P (Rn) and let 1 < r ≤ ∞. Fix an integer

(2.15) d ∈
(
n

p−
− n− 1,∞

)
∩ Z+.

A measurable function a on Rn is called a (p(·), r, d)-atom if there exists a ball
B such that

(i) supp a ⊂ B;

(ii) ∥a∥Lr(Rn) ≤ |B|1/r
∥χB∥

Lp(·)(Rn)

;

(iii)
∫
Rn a(x)x

αdx = 0 for all α ∈ Zn+ with |α| ≤ d.

We recall the notion of the variable atomic Hardy-Lorentz space, which is
taken from [14, Definition 5.2].

Definition 2.11. Let p(·) ∈ P (Rn), let 0 < q ≤ ∞, 1 < r ≤ ∞ and let d be

as (2.15). The variable atomic Hardy-Lorentz space H
p(·),q
atom,r,d (Rn) is defined

as the space of all f ∈ S ′ (Rn) which can be decomposed as

(2.16) f =
∑
i∈Z

∑
j∈N

λi,jai,j in S′ (Rn) ,

where {ai,j}i∈Z,j∈N is a sequence of (p(·), r, d)-atoms, associated with balls

{Bi,j}i∈Z,j∈N, satisfying that, for all x ∈ Rn and i ∈ Z,
∑
j∈N χBi,j (x) ≤ A

with A being a positive constant independent of x and i; and for all i ∈ Z and
j ∈ N, λi,j := Ã2i

∥∥χBi,j

∥∥
Lp(·)(Rn)

with Ã being a positive constant independent

of i and j. Moreover, for f ∈ H
p(·),q
atom,r,d (Rn), we define

∥f∥
H

p(·),q
atom,r,d(Rn)

:= inf

∑
i∈Z

∥∥∥∥∥∥∥
∑
j∈N

(
λi,jχBi,j∥∥χBi,j

∥∥
Lp(·)(Rn)

)p 1
p

∥∥∥∥∥∥∥
q

Lp(·)(Rn)


1
q

,

where the infimum is taken over all decompositions of f as (2.16).

Then, we give the atomic characterization of Hp(·),q(Rn) from [14, Theorem
5.4].

Lemma 2.12. Let p(·) ∈ C log (Rn), let 0 < q ≤ ∞, let r ∈ (max {p+, 1} ,∞]

and let d be as in (2.15). Then Hp(·),q (Rn) = H
p(·),q
atom,r,d (Rn) with equivalent

quasi-norms.

In the following, we introduce some notation, let

Uψ,(i)f :=

 ∑
(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2 ∣∣ψλj,k∣∣2
1/2

,
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Uψ,(ii)f :=

 ∑
(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2 χQj,k

|Qj,k|

1/2

,

Uψ,(iii)f :=

 ∑
(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2 χWλ
j,k

|Qj,k|

1/2

,

where Λ is as in (2.12). By Corollary 2.9, we know that Uψ,(i)f , Uψ,(ii)f , and
Uψ,(iii)f are well defined.

Now, we recall the following definition of atoms introduced in [10, Definition
4.17].

Definition 2.13. Let p(·) ∈ P (Rn) with p+ < r and r ∈ (1,∞), and let ψ be
the mother wavelet. A function a ∈ L2 (Rn) is called a (p(·), r, ψ)-atom if there
exists a dyadic cube R such that

a =
∑
λ∈E

∑
Q⊂R,Q∈D

(
a, ψλQ

)
ψλQ

supported in mR with m as in (2.5) and

∥∥Uψ,(ii)a∥∥Lr(Rn)
=

∥∥∥∥∥∥∥
∑
λ∈E

∑
Q⊂R,Q∈D

∣∣(a, ψλQ)∣∣2 χQ|Q|

1/2
∥∥∥∥∥∥∥
Lr(Rn)

⩽
|mR|1/r

∥χmR∥Lp(·)(Rn)

.

Remark 2.14. By [8, Remark 2.15], we know that Definition 2.13 is well defined.

The following lemma is just [7, Lemma 1].

Lemma 2.15. Let p(·) ∈ P (Rn) with p+ < r and r ∈ (1,∞), and let ψ be the
mother wavelet. If a is a (p(·), r, ψ)-atom related to a cube R, then there exists
a positive harmless constant c, independent of a, such that a/c is a (p(·), r, d)-
atom.

Lemma 2.16 ([21, Lemma 2.4]). Let 1 < u < ∞. Suppose p(·) ∈ C log (Rn)
satisfy p− > 1. Then there exists a positive constant C such that, for any
sequence of measurable functions {fj}∞j=1,∥∥∥∥∥∥∥

 ∞∑
j=1

[Mfj ]
u

1/u
∥∥∥∥∥∥∥
Lp(·)(Rn)

⩽ C

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
1/u

∥∥∥∥∥∥∥
Lp(·)(Rn)

,

where M denotes the Hardy-Littlewood maximal operator as in (2.3).
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Lemma 2.17 ([14, Theorem 3.4]). Let 1 < u <∞ and let q ∈ (0,∞]. Suppose
p(·) ∈ C log (Rn) satisfy p− > 1. Then there exists a positive constant C such
that, for any sequence of measurable functions {fj}∞j=1,∥∥∥∥∥∥∥

 ∞∑
j=1

[Mfj ]
u

1/u
∥∥∥∥∥∥∥
Lp(·),q(Rn)

⩽ C

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |u
1/u

∥∥∥∥∥∥∥
Lp(·),q(Rn)

,

where M denotes the Hardy-Littlewood maximal operator as in (2.3).

3. Intrinsic g-function characterization of Hp(·),q (Rn)

In this section, firstly, we recall the definition of intrinsic g-functions from
[17]. For any α ∈ (0, 1] and s ∈ Z+, let Tα,s (Rn) be the class of all functions
η ∈ Cs (Rn) such that supp η ⊂ {x ∈ Rn : |x| ≤ 1},∫

Rn

η(x)xγdx = 0 for any γ ∈ Zn+ with |γ| ≤ s,

and there exists a positive constant C, depending on s, such that, for any
ν ∈ Zn+, with |ν| = s, and any x1, x2 ∈ Rn,

|∂νη (x1)− ∂νη (x2)| ≤ C |x1 − x2|α .
For any f ∈ L1

loc (Rn) and (y, t) ∈ Rn+1
+ := Rn × (0,∞), let

Aα,s(f)(y, t) := sup
η∈Tα,s(Rn)

|f ∗ ηt(y)| ,

where ηt(·) := t−nη( ·t ) for any t ∈ (0,∞). Then the intrinsic g-function from
[17] is defined by setting, for any x ∈ Rn,

gα,s(f)(x) :=

{∫ ∞

0

[Aα,s(f)(x, t)]
2 dt

t

}1/2

.

Recall that, for all f ∈ S′ (Rn), the Littlewood-Paley g-function is defined by
setting, for all x ∈ Rn,

g(f)(x) :=

(∫ ∞

0

|f ∗ ϕt(x)|2
dt

t

)1/2

,

where, ϕ ∈ S (Rn) is a radial function satisfying [14, (8.1), (8.2) and (8.3)] and,
for any t ∈ (0,∞), ϕt(·) := 1

tnϕ
( ·
t

)
.

Recall that f ∈ S′ (Rn) is said to vanish weakly at infinity if, for every
ψ ∈ S (Rn), f ∗ ψt → 0 in S′ (Rn) as t→ ∞ (see [6, p. 50]).

The following result follows from [14, Theorem 8.2].

Lemma 3.1. Let p(·) ∈ C log (Rn) and let 0 < q ≤ ∞. Then f ∈ Hp(·),q (Rn) if
and only if f ∈ S′ (Rn), f vanishes weakly at infinity and g(f) ∈ Lp(·),q (Rn).
Moreover, for all f ∈ Hp(·),q (Rn),

C−1∥g(f)∥Lp(·),q(Rn) ≤ ∥f∥Hp(·),q(Rn) ≤ C∥g(f)∥Lp(·),q(Rn),
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where C is a positive constant independent of f .

The following lemma is a special case of [17, Proposition 3.2].

Lemma 3.2. Let α ∈ (0, 1], s ∈ Z+ and r ∈ (1,∞). Then there exists a
positive constant C such that, for any f ∈ A(Rn),∫

Rn

[gα,s(f)(x)]
r
dx ≤ C

∫
Rn

|f(x)|rdx.

Now we are ready to state and prove the main result of this section.

Theorem 3.3. Let p(·) ∈ C log (Rn), p+ ∈ (0, 1] and q ∈ (0, 1]. Suppose that
α ∈ (0, 1], s ∈ Z+ and p− ∈ (n/n+α+ s, 1]. Then f ∈ Hp(·),q (Rn) if and only

if f ∈
(
BMOp(·),r (Rn)

)∗
, the dual space of BMOp(·),r (Rn), f vanishes weakly

at infinity and gα,s(f) ∈ Lp(·),q (Rn) ; moreover, it holds true that

1

C
∥gα,s(f)∥Lp(·),q(Rn) ≤ ∥f∥Hp(·),q(Rn) ≤ C ∥gα,s(f)∥Lp(·),q(Rn)

with C being a positive constant independent of f .

Proof. Let q ∈ (0, 1], f ∈
(
BMOp(·),r (Rn)

)∗
vanish weakly at infinity and

gα,s(f) ∈ Lp(·),q (Rn). Then, by Proposition 2.8, we find that f ∈ S ′ (Rn).
Notice that, for all x ∈ Rn, g(f)(x) ≲ gα,s(f)(x), it follows that g(f) ∈
Lp(·),q (Rn). From this and Lemma 3.1, we find that there exists a distribution

f̃ ∈ S ′ (Rn) such that f̃ = f in S ′ (Rn), f̃ ∈ Hp(·),q (Rn) and ∥f̃∥Hp(·),q(Rn) ≲
∥g(f)∥Lp(·),q(Rn), which, together with [14, Lemma 8.4] and the fact that f

vanishes weakly at infinity, implies that f = f̃ in S ′ (Rn) and hence

∥f∥Hp(·),q(Rn) ∼ ∥f̃∥Hp(·),q(Rn) ≲ ∥g(f)∥Lp(·),q(Rn) ≲ ∥gα,s(f)∥Lp(·),q(Rn) .

This finishes the proof of the sufficiency of Theorem 3.3.
It remains to prove the necessity. For q ∈ (0, 1], let f ∈ Hp(·),q (Rn). Then,

by [14, Lemma 8.4], we see that f vanishes weakly at infinity and, by Lemma

2.12 and [14, Theorem 7.2], we have f ∈
(
BMOp(·),r (Rn)

)∗
. By Lemma 2.12,

there exist sequences of (p(·),∞, d)-atoms {ai,j}i∈Z,j∈N and nonnegative num-

bers {λi,j}i∈Z,j∈N such that the series
∑
i∈Z
∑
j∈N λi,jai,j converges to f in

S ′ (Rn) and λi,j ≈ 2i
∥∥χBi,j

∥∥
Lp(·)(Rn)

. For i0 ∈ Z, let

f =

i0−1∑
i=−∞

∑
j∈N

λi,jai,j +

∞∑
i=i0

∑
j∈N

λi,jai,j =: f1 + f2.

Hence, we get∥∥χ{x∈Rn:gα,s(f)(x)>2i0}
∥∥
Lp(·)(Rn)

≲
∥∥χ{x∈Rn:gα,s(f1)(x)>2i0−1}

∥∥
Lp(·)(Rn)

+
∥∥∥χ{x∈Ai0 :gα,s(f2)(x)>2i0−1}

∥∥∥
Lp(·)(Rn)

+
∥∥∥χ{x∈A∁

i0
:gα,s(f2)(x)>2i0−1}

∥∥∥
Lp(·)(Rn)
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=: J1 + J2 + J3,

where Ai0 :=
⋃∞
i=i0

⋃
j∈N (4Bi,j) and {Bi,j}i∈Z,j∈N are the balls as in [14, The-

orem 5.4].
Let δ1, δ2, δ3 and δ be the same as in [14, Theorem 5.4]. We first estimate

J1. It is obvious that

J1 ≲

∥∥∥∥∥∥∥χ{
x∈Rn:

i0−1∑
i=−∞

∑
j∈N

λi,jgα,s(ai,j)(x)χ4Bi,j>2i0−2

}
∥∥∥∥∥∥∥
Lp(·)(Rn)

+

∥∥∥∥∥∥∥χ{
x∈Rn:

i0−1∑
i=−∞

∑
j∈N

λi,jgα,s(ai,j)(x)χ(4Bi,j)
∁>2i0−2

}
∥∥∥∥∥∥∥
Lp(·)(Rn)

=: J1,1 + J1,2.

We now estimate J1,1. By Lemma 3.2 and the proof of [14, (5.8)], we obtain

J1,1 ≲ 2−i0δ1

 i0−1∑
i=−∞

2iqδ1

∥∥∥∥∥∥
∑
j∈N

χBi,j

∥∥∥∥∥∥
q

Lp(·)(Rn)


1
q

and

(3.1)

∞∑
i0=−∞

2i0q
∥∥∥χ{x∈Rn:gα,s(f1)χ4Bi,j

(x)>2i0}
∥∥∥q
Lp(·)(Rn)

≲ ∥f∥
H

p(·),q
atom,r,d(Rn)

.

Next, we deal with J1,2. By the similar argument that used in [26, p. 1564],

for all i ∈ Z, j ∈ N and x ∈ (4χBi,j)
∁
, we obtain

(3.2) |gα,s (ai,j) (x)| ≲
∥∥χBi,j

∥∥−1

Lp(·)(Rn)

(
M
(
χBi,j

)
(x)
)n+s+α

n .

Then by the Hölder inequality and a similar argument that used in the proof
of [14, (5.10)], we get

J1,2 ≲ 2−i0δ2

 i0−1∑
i=−∞

2iqδ2

∥∥∥∥∥∥
∑
j∈N

χBi,j

∥∥∥∥∥∥
q

Lp(·)(Rn)


1
q

and

(3.3)

∞∑
i0=−∞

2i0q

∥∥∥∥∥χ{
x∈Rn:gα,s(f1)χ(4Bi,j)

∁ (x)>2i0

}
∥∥∥∥∥
q

Lp(·)(Rn)

≲ ∥f∥q
H

p(·),q
atom,r,d(Rn)

.
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For I2, by an argument similar to that used in the proof of [14, (5.11)], we get

J2 ≤
∥∥χAi0

∥∥
Lp(·)(Rn)

≲ 2−i0δ3

 ∞∑
i=i0

2iδ3q

∥∥∥∥∥∥
∑
j∈N

χBi,j

∥∥∥∥∥∥
q

Lp(·)(Rn)


1
q

and

(3.4)

∞∑
i0=−∞

2i0q
∥∥∥χ{x∈Ai0

:gα,s(f2)(x)>2i0}
∥∥∥q
Lp(·)(Rn)

≲ ∥f∥q
H

p(·),q
atom,r,d(Rn)

.

For J3, by (3.2), Lemma 2.16 and an argument similar to that used in the proof
of [14, (5.12)], we find that

J3 ≲ 2−i0δ

 ∞∑
i=i0

2iδq

∥∥∥∥∥∥
∑
j∈N

χBi,j

∥∥∥∥∥∥
q

Lp(·)


1
q

and

(3.5)

∞∑
i0=−∞

2i0q
∥∥∥∥χ{

x∈(Ai0)
∁
:gα,s(f2)(x)>2i0

}∥∥∥∥q
Lp(·)(Rn)

≲ ∥f∥q
H

p(·),q
atom,r,d(Rn)

.

Finally, combining (3.1), (3.3), (3.4) and (3.5), we obtain

∥gα,s(f)∥Lp(·),q(Rn) ≲ ∥f∥Hp(·),q(Rn).

The proof is complete. □

Now, we recall a discrete variant of the Littlewood-Paley g-function g̃λ(f)
from [8]. For any λ ∈ E, f ∈ L2 (Rn), and x ∈ Rn, let

g̃λ(f)(x) :=

∑
j∈Z

∣∣f ∗ ψλ2−j (x)
∣∣21/2

,

where ψλ is as in (2.8).

Lemma 3.4 ([17, Theorem 2.6]). Let λ ∈ E, s ∈ Z+, α ∈ (0, 1], and ε ∈
(max{s, α},∞). Then there exists a positive constant C such that, for any f
satisfying

(3.6) |f(·)|(1 + | · |)−n−ε ∈ L1 (Rn) ,

it holds that

g̃λ(f)(x) ⩽ Cgα,s(f)(x), ∀x ∈ Rn.

The following conclusion follows from Theorem 3.3 and Lemma 3.4, the
details being omitted.
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Proposition 3.5. Let λ ∈ E, s ∈ Z+, p(·) ∈ C log (Rn), p− ∈ (n/n+ α+ s, 1]
and let 0 < q ≤ 1. If f ∈ Hp(·),q (Rn) ∩ L2 (Rn), then g̃λ(f) ∈ Lp(·),q (Rn) ;
moreover, there exists a positive constant C(λ), depending on λ, such that, for

any f ∈ Hp(·),q (Rn) ∩ L2 (Rn),∥∥g̃λ(f)∥∥
Lp(·),q(Rn)

⩽ C(λ)∥f∥Hp(·),q(Rn).

For any λ ∈ E, j ∈ Z, ν ∈ (0,∞), f ∈ L2 (Rn), and x ∈ Rn, we recall a
variant of the Peetre type maximal functions from [8] defined by setting,

ψλ,∗∗j,ν (f)(x) := sup
y∈Rn

∣∣f ∗ ψλ2−j (x− y)
∣∣

[1 + 2j |y|]ν
.

From some arguments similar to those used in the proof of [10, Proposition
4.8], we obtain the following result.

Proposition 3.6. Let s ∈ Z+, p(·) ∈ C log (Rn), r ∈ (1,∞), ν ∈ (max {1/2 ,
1/p−} ,∞) and q ∈ (0, 1]. Then there exists a positive constant C(λ,ν), depend-

ing on λ and ν, such that, for any f ∈ Hp(·),q (Rn) ∩ Lr (Rn),∥∥∥∥∥∥∥


∞∑
j=−∞

∣∣∣ψλ,∗∗j,ν (f)
∣∣∣2


1/2
∥∥∥∥∥∥∥
Lp(·),q(Rn)

⩽ C(λ,ν)∥f∥Hp(·),q(Rn).

Proof. By some arguments similar to those used in the proof of [11, p. 271] in
1-dimensional case, for any j ∈ Z, f ∈ Lr (Rn), ν ∈ (0,∞), and x ∈ Rn, we
find that,

ψλ,∗∗j,ν f(x) ≲
[
M
(∣∣f ∗ ψλ2−j

∣∣1/ν) (x)]ν
with the implicit positive constant depending only on λ, ν, and n.

Combining this, the Fefferman-Stein vector-valued maximal inequality, The-
orem 3.3 and Lemma 3.4, for any f ∈ Hp(·),q (Rn) ∩ Lr (Rn), we obtain∥∥∥∥∥∥∥

∑
j∈Z

∣∣∣ψλ,∗∗j,ν (f)
∣∣∣2
1/2

∥∥∥∥∥∥∥
Lp(·),q(Rn)

≲

∥∥∥∥∥∥∥
∑
j∈Z

[
M
(∣∣ψλ2−j ∗ f

∣∣1/ν)]2ν
1/2
∥∥∥∥∥∥∥
Lp(·),q(Rn)

∼

∥∥∥∥∥∥∥
∑
j∈Z

[
M
(∣∣ψλ2−j ∗ f

∣∣1/ν)]2ν
1/(2ν)

∥∥∥∥∥∥∥
ν

Lνp(·),νq(Rn)
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≲

∥∥∥∥∥∥∥
∑
j∈Z

∣∣ψλ2−j ∗ f
∣∣2

1/(2ν)
∥∥∥∥∥∥∥
ν

Lνp(·),νq(Rn)

∼
∥∥g̃λ(f)∥∥

Lp(·),q(Rn)

≲ ∥gα,s(f)∥Lp(·),q(Rn)

≲ ∥f∥Hp(·),q(Rn),

where α ∈ (0, 1], s ∈ Z+, and (pν)− = p−ν > 1. The proof is complete. □

4. Wavelet characterizations of Hp(·),q (Rn)

In this section, we provide several equivalent characterizations of the variable
Hardy-Lorentz space Hp(·),q (Rn) via wavelets.

Let d be an integer satisfying (2.4). By Remark 2.6(ii), it follows that if

f ∈ Hp(·),q (Rn) for 0 < q ≤ 1, then f ∈
(
BMOp(·),r (Rn)

)∗
. Further, from

Corollary 2.9, it follows that ψλj,k ∈ BMOp(·),r (Rn). Let ⟨·, ·⟩ denote the dual

relation between BMOp(·),r (Rn) and
(
BMOp(·),r (Rn)

)∗
. Hence, following an

idea used in [20, p. 177], it follows that
〈
f, ψλj,k

〉
is well defined in the sense of

the duality between BMOp(·),r (Rn) and
(
BMOp(·),r (Rn)

)∗
.

Now we state the main results of this section.

Theorem 4.1. Let p(·) ∈ C log (Rn), q ∈ (0, 1] and 1 ≤ r < ∞. Let d be an
integer satisfying

n

n+ 1 + d
< p− ⩽ p+ ⩽ 1

and suppose
{
ψλj,k

}
(λ,j,k)∈Λ

is a d-order wavelet system.

For any f ∈
(
BMOp(·),r (Rn)

)∗
, assume that

(4.1) f =
∑

(λ,j,k)∈Λ

〈
f, ψλj,k

〉
ψλj,k.

Then the following statements are mutually equivalent:

(i) f ∈ Hp(·),q (Rn) ;
(ii)

∥f∥(i) :=

∥∥∥∥∥∥∥
 ∑
(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2 ∣∣ψλj,k∣∣2
1/2

∥∥∥∥∥∥∥
Lp(·),q(Rn)

<∞;

(iii)

∥f∥(ii) :=

∥∥∥∥∥∥∥
 ∑
(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2 χQj,k

|Qj,k|

1/2
∥∥∥∥∥∥∥
Lp(·),q(Rn)

<∞;
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(iv)

∥f∥(iii) :=

∥∥∥∥∥∥∥
 ∑
(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2 χWλ
j,k

|Qj,k|

1/2
∥∥∥∥∥∥∥
Lp(·),q(Rn)

<∞,

where, for any (λ, j, k) ∈ Λ, Wλ
j,k ⊂ Qj,k is as in (2.9) and

(4.2)
∣∣Wλ

j,k

∣∣ ∼ |Qj,k|

with the implicit positive constants independent of (λ, j, k).
Moreover, all the quasi-norms ∥ · ∥(i), ∥ · ∥(ii), and ∥ · ∥(iii) are equivalent to

∥ · ∥Hp(·),q(Rn).

Proof. We observe that (4.2) follows from (2.10). Then, we only need to prove
that (i) through (iv) of Theorem 4.1 are mutually equivalent. Indeed, we prove
(i) ⇒ (ii) ⇒ (iv) ⇒ (iii) ⇒ (i).

(i) ⇒ (ii) Notice that Hp(·),q (Rn) is a quasi-Banach space and Hp(·),q (Rn)∩
Lr (Rn) with r as in Lemma 2.12 is dense in Hp(·),q (Rn). Hence, it suffices to
prove that, for any f ∈ Hp(·),q (Rn) ∩ Lr (Rn),∥∥Uψ,(i)f∥∥Lp(·),q(Rn)

≲ ∥f∥Hp(·),q(Rn).

Indeed, from the proof of [8, Theorem 1.9], for any (λ, j, k) ∈ Λ and f ∈
Hp(·),q (Rn) ∩ Lr (Rn), we have that,∣∣(f, ψλj,k)∣∣ ≲ 2−jn/2 sup

y∈Qλ
j,k

∣∣∣ψ̃λ2−j ∗ f(y)
∣∣∣

with ψ̃(x) := ψ(−x) for any x ∈ Rn and, for almost every x ∈ Rn,∑
k∈Zn

∣∣〈f, ψλj,k〉∣∣2 ∣∣ψλj,k(x)∣∣2 ≲
[
ψλ,∗∗j,ν f(x)

]2
,

where the implicit positive constants depend only on ν, m, and n with m as in
(2.5).

By some arguments similar to [7, (17)], we select ν ∈ (max {1/2, 1/p−} ,∞).
Combining these facts and Proposition 3.6, we get∥∥Uψ,(i)f∥∥p−Lp(·),q(Rn)

≲

∥∥∥∥∥∥∥
∑
λ∈E


∞∑

j=−∞

∑
k∈Zn

∣∣〈f, ψλj,k〉∣∣2 ∣∣ψλj,k∣∣2


1/2
∥∥∥∥∥∥∥
p−

Lp(·),q(Rn)

≲
∑
λ∈E

∥∥∥∥∥∥∥


∞∑
j=−∞

∑
k∈Zn

∣∣〈f, ψλj,k〉∣∣2 ∣∣ψλj,k∣∣2


1/2
∥∥∥∥∥∥∥
p−

Lp(·),q(Rn)

(4.3)
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≲
∑
λ∈E

∥∥∥∥∥∥∥


∞∑
j=−∞

∣∣∣ψλ,∗∗j,ν (f)
∣∣∣2


1/2
∥∥∥∥∥∥∥
p−

Lp(·),q(Rn)

≲ ∥f∥p−
Hp(·),q(Rn)

,

which completes the proof for (i) ⇒ (ii).
(ii) ⇒ (iv) It is an easy consequence of the fact (2.11). Moreover, we obtain

(4.4)
∥∥Uψ,(iii)f∥∥Lp(·),q(Rn)

⩽
∥∥Uψ,(i)f∥∥Lp(·),q(Rn)

.

(iv) ⇒ (iii) By [8, (3.3)], we have that, for any s ∈ (0,∞) and (λ, j, k) ∈ Λ,

(4.5) χQj,k
≲
[
M
(
χWλ

j,k

)]1/s
.

Moreover, choosing 1
e ∈ (max {1/2, 1/p−} ,∞), combining (4.5) and the

Fefferman-Stein vector valued maximal inequality (see Lemma 2.17) with u
replaced by 2/e and 1

e ∈ (max {1/2, 1/p−} ,∞), we get

∥f∥(ii)

≲

∥∥∥∥∥∥∥∥


∑
(λ,j,k)∈Λ

∣∣∣〈f, ψλj,k〉∣∣∣2
|Qj,k|

[
M
(
χWλ

j,k

)]2/e
1/2
∥∥∥∥∥∥∥∥
Lp(·),q(Rn)

∼

∥∥∥∥∥∥∥∥


∑
(λ,j,k)∈Λ

M


∣∣∣〈f, ψλj,k〉∣∣∣
|Qj,k|1/2

χWλ
j,k

e2/e

e/2
∥∥∥∥∥∥∥∥
1/e

Lp(·)/e,q/e(Rn)

≲

∥∥∥∥∥∥∥∥


∑
(λ,j,k)∈Λ


∣∣∣〈f, ψλj,k〉∣∣∣
|Qj,k|1/2

χWλ
j,k

2

e/2
∥∥∥∥∥∥∥∥
1/e

Lp(·)/e,q/e(Rn)

∼

∥∥∥∥∥∥∥
 ∑

(λ,j,k)∈Λ

∣∣〈f, ψλj,k〉∣∣2 χWλ
j,k

|Qj,k|


1/2
∥∥∥∥∥∥∥
Lp(·),q(Rn)

∼ ∥f∥(iii),

(4.6)

where (p
e

)
−
=

1

e
p− > 1.

This shows that (iv) ⇒ (iii).
(iii) ⇒ (i) From some arguments similar to those used in the proof of (iii) ⇒

(i) in [8, Theorem 1.9], we only need to prove that, for any f ∈ L2 (Rn) with
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Uψ,(ii)f ∈ Lp(·),q (Rn),

(4.7) ∥f∥Hp(·),q(Rn) ≲
∥∥Uψ,(ii)f∥∥Lp(·),q(Rn)

.

For any f ∈ L2 (Rn) with Uψ,(ii)f ∈ Lp(·),q (Rn), we aim to show

(4.8) f =
∑
Q∈D

(
f, ψλQ

)
ψλQ =

∑
k∈Z

∑
i∈∆k

b(k, i),

where {b(k, i) : k ∈ Z, i ∈ ∆k} are some multiples of (p(·), r, ψ)-atoms with p(·)
and r as in Lemma 2.12, and ψ is the mother wavelet, which will be determined
later. For any k ∈ Z, let

Ωk :=
{
x ∈ Rn : Uψ,(ii)f(x) > 2k

}
,

Dk :=

{
Q ∈ D : |Q ∩ Ωk| ⩾

1

2
|Q|, |Q ∩ Ωk+1| <

1

2
|Q|
}
,

and D̃ :=
⋃
k∈Z Dk.

From the proof of [8, Theorem 1.7], we have that, for any Q ∈ D̃, there
exists a unique k ∈ Z such that Q ∈ Dk and, for any f ∈ L2 (Rn) such that

Uψ,(ii)f ∈ Lp(·),q (Rn), and Q ∈ D\D̃,

(4.9)
〈
f, ψλQ

〉
= 0.

Observe that, due to the nesting property of dyadic cubes, for any Q ∈ Dk,
there exists a unique maximal dyadic cube Q̃ ∈ Dk such that Q ⊂ Q̃. Let{
Q̃ik ∈ Dk : i ∈ ∆k

}
be the collection of all such maximal dyadic cubes in Dk.

Then

D̃ =
⋃
k∈Z

Dk =
⋃
k∈Z

⋃
i∈∆k

{
Q ∈ Dk : Q ⊂ Q̃ik

}
.

By (4.8) and (4.9), we find that, for any f ∈ L2 (Rn) with Uψ,(ii)f ∈ Lp(·),q (Rn),

f =
∑
λ∈E

∑
Q∈D

(
f, ψλQ

)
ψλQ

=
∑
λ∈E

∑
Q∈D̃

(
f, ψλQ

)
ψλQ

=
∑
λ∈E

∑
k∈Z

∑
i∈∆k


∑

{Q⊂Q̃i
k,Q∈Dk}

(
f, ψλQ

)
ψλQ


=:
∑
k∈Z

∑
i∈∆k

b(k, i),

where, for any k ∈ Z and i ∈ ∆k,

b(k, i) :=
∑
λ∈E

∑
{Q⊂Q̃i

k,Q∈Dk}

(
f, ψλQ

)
ψλQ.
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According to the estimate in [7, p. 754], we know that b(k, i) is a multiple of
(p(·), r, ψ)-atom.

Let m ∈ N satisfy 2m ⩾ r. According to the estimate in [7, (24)], we have

(4.10)
∥∥Uψ,(ii)b(k, i)∥∥Lr(Rn)

≲ 2k
∣∣∣Q̃ik∣∣∣1/r .

By some arguments similar to (4.5) and the fact that∣∣∣mQ̃ik∣∣∣ ∼ ∣∣∣Q̃ik∣∣∣ ≲ ∣∣∣Q̃ik ∩ Ωk

∣∣∣
for any t ∈ (0,∞), we deduce that,

(4.11) χmQ̃j,k
≲
[
M
(
χQ̃i

k∩Ωk

)]1/t
.

This, together with (4.10), the Fefferman-Stein vector-valued maximal inequal-
ity, some arguments similar to those used in the estimate of (4.6), and the

disjointness of
{
Q̃ik
}
i∈∆k

, implies that

∑
k∈Z

∥∥∥∥∥∥∥∥
∑
i∈∆k

 |λ(k, i)|∥∥∥χmQ̃i
k

∥∥∥
Lp(·)(Rn)


p

χmQ̃i
k


1/p
∥∥∥∥∥∥∥∥
q

Lp(·)(Rn)

=
∑
k∈Z

∥∥∥∥∥∥∥∥
∑
i∈∆k


∥∥Uψ,(ii)b(k, i)∥∥Lr(Rn)∣∣∣mQ̃ik∣∣∣1/r


p

χmQ̃i
k


1/p
∥∥∥∥∥∥∥∥
q

Lp(·)(Rn)

≲
∑
k∈Z

∥∥∥∥∥∥
[∑
i∈∆k

2kpχmQ̃i
k

]1/p∥∥∥∥∥∥
q

Lp(·)(Rn)

≲
∑
k∈Z

∥∥∥∥∥∥
[∑
i∈∆k

2kpχQ̃i
k∩Ωk

]1/p∥∥∥∥∥∥
q

Lp(·)(Rn)

≲
∑
k∈Z

∥∥∥[2kpχΩk

]1/p∥∥∥q
Lp(·)(Rn)

∼
∑
k∈Z

2kq ∥χΩk
∥q
Lp(·)(Rn)

∼
∥∥Uψ,(ii)f∥∥qLp(·),q(Rn)

.
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Hence, by Lemmas 2.12 and 2.15, we get

∥f∥Hp(·),q(Rn)

≲


∑
k∈Z

∥∥∥∥∥∥∥∥
∑
i∈∆k

 |λ(k, i)|∥∥∥χmQ̃i
k

∥∥∥
Lp(·)(Rn)


p

χmQ̃i
k


1/p
∥∥∥∥∥∥∥∥
q

Lp(·)(Rn)


1
q

≲
∥∥Uψ,(ii)f∥∥Lp(·),q(Rn)

.

(4.12)

This implies (iii) ⇒ (i).
Hence, (i)-(iv) are mutually equivalent.
Moreover, by (4.3), (4.4), (4.7), and (4.12), we find that each of ∥ · ∥(i) ,

∥ · ∥(ii) , and ∥ · ∥(iii) is equivalent to ∥ · ∥Hp(·),q(Rn). This completes the proof
of Theorem 4.1. □

From Theorem 4.1, we conclude the following result, see the proof of [8,
Corollary 1.10] for more details.

Corollary 4.2. Replacing the assumption (4.1) in Theorem 4.1 by f ∈ L2 (Rn),
then all the conclusions in Theorem 4.1 still hold true.
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