Bull. Korean Math. Soc. **61** (2024), No. 2, pp. 489–509 https://doi.org/10.4134/BKMS.b230191 pISSN: 1015-8634 / eISSN: 2234-3016

WAVELET CHARACTERIZATIONS OF VARIABLE HARDY-LORENTZ SPACES

Yao He

ABSTRACT. In this paper, let $q \in (0, 1]$. We establish the boundedness of intrinsic g-functions from the Hardy-Lorentz spaces with variable exponent $H^{p(\cdot),q}(\mathbb{R}^n)$ into Lorentz spaces with variable exponent $L^{p(\cdot),q}(\mathbb{R}^n)$. Then, for any $q \in (0, 1]$, via some estimates on a discrete Littlewood-Paley g-function and a Peetre-type maximal function, we obtain several equivalent characterizations of $H^{p(\cdot),q}(\mathbb{R}^n)$ in terms of wavelets.

1. Introduction

As a generalization of $L^p(\mathbb{R}^n)$, the variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n)$ was introduced by Orlicz [22] in 1930's. Lorentz spaces on \mathbb{R}^n were studied by Lorentz in the early 1950's. Lorentz spaces, as generalizations of $L^p(\mathbb{R}^n)$, are known to be the intermediate spaces of Lebesgue spaces in the real interpolation method; see [1,18]. Over the past couple of years, the study of Hardy-Lorentz spaces has always been an interesting topic. For example, the real interpolation of the Hardy-Lorentz space $H^{p,q}(\mathbb{R}^n)$ was investigated by Fefferman, Riviére, and Sagher [4]; the space $H^{1,\infty}(\mathbb{R}^n)$ was considered by Fefferman and Soria [5].

Nowadays, due to the development of variable Lebesgue spaces, there has been a lot of research on the study of Hardy spaces with variable exponents in harmonic analysis. A major breakthrough on Lebesgue spaces with variable exponent is that under some regularity assumptions on $p(\cdot)$, the Hardy-Littlewood maximal operator is bounded on $L^{p(\cdot)}(\mathbb{R}^n)$ [3]. Moreover, Nakai and Sawano [21] made a lot of progress on variable Hardy spaces $H^{p(\cdot)}(\mathbb{R}^n)$. They established the atomic decompositions and the dual spaces of $H^{p(\cdot)}(\mathbb{R}^n)$ in [3]. Later, Sawano [23] extended the atomic characterization of $H^{p(\cdot)}(\mathbb{R}^n)$ and improved the corresponding results in [21]. Recently, Jiao et al. [14] established some realvariable characterizations of variable Hardy-Lorentz spaces. As applications of

O2024Korean Mathematical Society

Received March 30, 2023; Revised July 27, 2023; Accepted October 19, 2023.

²⁰¹⁰ Mathematics Subject Classification. Primary 42C40, 42B30; Secondary 42B25, 46E30.

 $Key\ words\ and\ phrases.$ Variable Hardy-Lorentz space, Peetre-type maximal function, Littlewood-Paleyg-function, wavelet, atom.

the atomic decompositions, they developed a theory of real interpolation and formulated the dual space of the variable Hardy-Lorentz space with $0 < p_{-} \leq p_{+} \leq 1$ and $0 < q < \infty$.

In the 1990s, the wavelet theory was established involving different Hardytype spaces. Precisely, several equivalent wavelet characterizations of $H^1(\mathbb{R}^n)$ were established by Meyer [20]; some equivalent wavelet characterizations of the weak Hardy space $H^{1,\infty}(\mathbb{R}^n)$ were studied by Liu [19]; a wavelet area integral characterization of the weighted Hardy space $H^p_{\omega}(\mathbb{R}^n)$ for any $p \in (0, 1]$ was established by Wu [25]; and independently, via the vector-valued Calderón-Zygmund theory, a characterization of $H^p_{\omega}(\mathbb{R}^n)$ for $p \in (0, 1]$ in terms of wavelets without compact supports was established by García-Cuerva and Martell [10]. Later, the wavelet inequalities of Lebesgue spaces with variable exponents were introduced by Kopaliani [16] and Izuki [12] independently. In addition, the wavelet characterization for weighted Lebesgue spaces with variable exponents was established by Izuki, Nakai, and Sawano [13].

Recently, via wavelets, several equivalent characterizations of the Musielak-Orlicz Hardy space $H^{\varphi}(\mathbb{R}^n)$ were established by Fu and Yang [8]. Later, via wavelets, several equivalent characterizations of $H^{p(\cdot)}(\mathbb{R}^n)$ were established by Fu [7], which extends the wavelet characterizations of the classical Hardy space in [20, Theorems 5.1, 6.4]. In addition, when (\mathcal{X}, d, μ) is a metric measure space of homogeneous type in the sense of R. R. Coifman and G. Weiss and $H^1_{at}(\mathcal{X})$ is the atomic Hardy space, Fu and Yang [9] established several equivalent characterizations of $H^1_{at}(\mathcal{X})$ in terms of wavelets.

Motivated by the above results, especially by [8, 14], we establish several equivalent characterizations of $H^{p(\cdot),q}(\mathbb{R}^n)$ in terms of wavelets where $q \in (0, 1]$.

We describe how we organize this paper. In Section 2, we first recall some known notions and notation. Then, recall the atomic characterizations of $H^{p(\cdot),q}(\mathbb{R}^n)$ from [14, Theorem 5.4] (see Lemma 2.12 below). In Section 3, for any $q \in (0,1]$, we establish the boundedness of intrinsic g-functions from the Hardy-Lorentz spaces with variable exponent $H^{p(\cdot),q}(\mathbb{R}^n)$ into Lorentz spaces with variable exponent $L^{p(\cdot),q}(\mathbb{R}^n)$ (see Theorem 3.3 below), and get some estimates on a discrete Littlewood-Paley g-function and a Peetre-type maximal function (see Propositions 3.5 and 3.6, respectively, below). In Section 4, we prove Theorem 4.1. Via the estimate on the Peetre-type maximal function, the wavelet characterizations of Lebesgue spaces from [20] and some standard arguments on the wavelet characterizations of the classical Hardy spaces, we complete the proof of Theorem 4.1.

Notation. In this paper, we denote by C a positive constant which is independent of the main parameters, but it may vary from line to line. We also use $C_{(\alpha,\beta,\ldots)}$ to denote a positive constant depending on the parameters α, β, \ldots . The symbol $f \leq g$ means $f \leq Cg$ for a positive constant C, and $f \sim g$ amounts to $f \geq g \geq f$. For any $a \in \mathbb{R}$, the symbol $\lfloor a \rfloor$ denotes the largest integer m such that $m \leq a$. Let $\mathbb{N} := \{1, 2, \ldots\}, \mathbb{Z}_+ := \mathbb{N} \cup \{0\}$ and $\mathbb{Z}_+^n := (\mathbb{Z}_+)^n$. For any

 $p \in [1, \infty]$, p' denotes its conjugate number, namely, 1/p + 1/p' = 1. For any subset E of \mathbb{R}^n , we use χ_E to denote its characteristic function. Moreover, $\langle \cdot, \cdot \rangle$ and $(\cdot, \cdot)_{L^2(\mathbb{R}^n)}$ represent the duality relation and the $L^2(\mathbb{R}^n)$ inner product, respectively.

2. Preliminaries

In this section, we first recall some notions and notation. For any $x \in \mathbb{R}^n$ and $r \in (0, \infty)$, let

$$B(x, r) := \{ y \in \mathbb{R}^n : |y - x| < r \}$$

denote the open ball. Let $\mathcal{A}(\mathbb{R}^n)$ be the set of all Lebesgue measurable functions on \mathbb{R}^n .

A measurable function $p(\cdot) : \mathbb{R}^n \to (0, \infty)$ is called a variable exponent. Denote by $\mathcal{P}(\mathbb{R}^n)$ the collection of all variable exponents $p(\cdot)$ satisfying

$$0 < p_- := \operatorname{ess\,\inf}_{x \in \mathbb{R}^n} p(x) \le \operatorname{ess\,\sup}_{x \in \mathbb{R}^n} p(x) =: p_+ < \infty.$$

In the following, let

$$p = \min\left\{p_{-}, 1\right\}.$$

1

Definition 2.1 ([2, Definition 2.16]). Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$. Then the Lebesgue space with variable exponent is defined by setting

$$L^{p(\cdot)}\left(\mathbb{R}^{n}\right) := \left\{ f \in \mathcal{A}\left(\mathbb{R}^{n}\right) : \|f\|_{L^{p(\cdot)}\left(\mathbb{R}^{n}\right)} < \infty \right\},\$$

where

$$\|f\|_{L^{p(\cdot)}(\mathbb{R}^n)} := \inf \left\{ \lambda \in (0,\infty) : \rho_{p(\cdot)}\left(\frac{|f|}{\lambda}\right) \leqslant 1 \right\}, \ \rho_{p(\cdot)}(f) := \int_{\mathbb{R}^n} |f(x)|^{p(x)} dx.$$

Definition 2.2 ([15, Definition 2.2]). Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ and let $0 < q \leq \infty$. Then the Lorentz space with variable exponent is defined by setting

$$L^{p(\cdot),q}\left(\mathbb{R}^{n}\right) := \left\{ f \in \mathcal{A}\left(\mathbb{R}^{n}\right) : \left\|f\right\|_{L^{p(\cdot),q}\left(\mathbb{R}^{n}\right)} < \infty \right\},\$$

where

$$\|f\|_{L^{p(\cdot)q}(\mathbb{R}^n)} := \begin{cases} \left(\int_0^\infty \lambda^q \|\chi_{\{x \in \mathbb{R}^n : |f(x)| > \lambda\}}\|_{L^{p(\cdot)}(\mathbb{R}^n)}^q \frac{d\lambda}{\lambda}\right)^{1/q}, & \text{if } 0 < q < \infty, \\ \sup_{\lambda > 0} \lambda \|\chi_{\{x \in \mathbb{R}^n : |f(x)| > \lambda\}}\|_{L^{p(\cdot)}(\mathbb{R}^n)}, & \text{if } q = \infty. \end{cases}$$

Lemma 2.3 ([14, Lemma 2.8]). Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ and let $0 < q \leq \infty$. Then, for all $f \in L^{p(\cdot),q}(\mathbb{R}^n)$ and $s \in (0, \infty)$, it holds true that

$$|||f|^{s}||_{L^{p(\cdot),q}(\mathbb{R}^{n})} = ||f||_{L^{sp(\cdot),sq}(\mathbb{R}^{n})}^{s}$$

A function $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ is said to satisfy the globally log-Hölder continuous condition, denoted by $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, if there exist positive constants $C_{p(\cdot)}$, C_{∞} and p_{∞} such that, for all $x, y \in \mathbb{R}^n$,

(2.1)
$$|p(x) - p(y)| \le \frac{C_{p(\cdot)}}{\log(e+1/|x-y|)}$$

Y. HE

and

(2.2)
$$|p(x) - p_{\infty}| \le \frac{C_{\infty}}{\log(e + |x|)}$$

For $r \in (0, \infty)$, we denote $L^r_{\text{loc}}(\mathbb{R}^n)$ to be the set of all *r*-locally integrable functions on \mathbb{R}^n . Recall that the Hardy-Littlewood maximal operator \mathcal{M} is defined by setting, for all $f \in L^1_{\text{loc}}(\mathbb{R}^n)$,

(2.3)
$$\mathcal{M}(f)(x) := \sup_{x \in B} \frac{1}{|B|} \int_{B} |f(y)| dy, \quad x \in \mathbb{R}^{n},$$

where the supremum is taken over all balls B of \mathbb{R}^n containing x.

We denote $S(\mathbb{R}^n)$ to be the space of all Schwartz functions and $S'(\mathbb{R}^n)$ to be its topological dual space equipped with the weak-* topology. For $N \in \mathbb{N}$, let

$$\mathcal{F}_{N}\left(\mathbb{R}^{n}\right) := \left\{\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right) : \sum_{\beta \in \mathbb{Z}_{+}^{n}, |\beta| \leq N} \sup_{x \in \mathbb{R}^{n}} \left[(1+|x|)^{N} \left|D^{\beta}\psi(x)\right|\right] \leq 1\right\},\$$

where, for any $\beta := (\beta_1, \ldots, \beta_n) \in \mathbb{Z}_+^n$, $|\beta| = \beta_1 + \cdots + \beta_n$ and $D^{\beta} := \left(\frac{\partial}{\partial x_1}\right)^{\beta_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\beta_n}$. Then for all $f \in \mathcal{S}'(\mathbb{R}^n)$, the radial grand maximal function $f_{N,+}^*$ of f is defined by setting, for all $x \in \mathbb{R}^n$,

$$f_{N,+}^{*}(x) := \sup\left\{ \left| f * \psi_{t}(x) \right| : t \in (0,\infty) \text{ and } \psi \in \mathcal{F}_{N}\left(\mathbb{R}^{n}\right) \right\},\$$

where, for all $t \in (0, \infty)$ and $\xi \in \mathbb{R}^n$, $\psi_t(\xi) := t^{-n}\psi(\xi/t)$. We simply use f^* to denote $f_{N,+}^*$.

Definition 2.4 ([14, Definition 2.14]). Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, let $0 < q \leq \infty$ and let $N \in \left(\frac{n}{\underline{p}} + n + 1, \infty\right)$ be a positive integer. The variable Hardy-Lorentz space $H^{p(\cdot),q}(\mathbb{R}^n)$ is defined by setting

$$H^{p(\cdot),q}\left(\mathbb{R}^{n}\right) := \left\{ f \in S'\left(\mathbb{R}^{n}\right) : \left\|f^{*}\right\|_{L^{p(\cdot),q}\left(\mathbb{R}^{n}\right)} < \infty \right\},\$$

equipped with the quasi-norm

$$||f||_{H^{p(\cdot),q}(\mathbb{R}^n)} := ||f^*||_{L^{p(\cdot),q}(\mathbb{R}^n)}.$$

We denote $\mathbb{P}^{s}(\mathbb{R}^{n})$ to be the set of all polynomials having degree at most s. For a locally integrable function f, a ball B and a nonnegative integer s, there exists a unique polynomial P such that for any polynomial $R \in \mathbb{P}^{s}(\mathbb{R}^{n})$,

$$\int_{B} (f(x) - P(x))R(x)dx = 0.$$

Denote this unique polynomial P by $P_B^s f$.

Definition 2.5 ([21]). Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ and let $1 \leq r < \infty$. The BMO space $BMO_{p(\cdot),r}(\mathbb{R}^n)$ is defined by setting

$$BMO_{p(\cdot),r}\left(\mathbb{R}^{n}\right) := \left\{ f \in L^{r}_{\text{loc}}\left(\mathbb{R}^{n}\right) : \|f\|_{BMO_{p(\cdot),r}\left(\mathbb{R}^{n}\right)} < \infty \right\},\$$

where

$$||f||_{BMO_{p(\cdot),r}(\mathbb{R}^{n})} := \sup_{B \in \mathcal{B}} \frac{|B|}{\|\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}} \left(\frac{1}{|B|} \int_{B} |f(x) - P_{B}^{s} f(x)|^{r} dx\right)^{1/r},$$

(1 \le r < \infty)

where \mathcal{B} is the set of all balls.

Remark 2.6. Let $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, let d be an integer satisfying

(2.4)
$$d \ge d_{p(\cdot)} := \min \{ d \in \mathbb{Z}_+ : p_-(n+1+d) > n \} \}$$

and let $r\in(\max\left\{p_+,1\right\},\infty]$ and $q\in(0,1].$ By [14, Theorems 5.4 and 7.2], we find that

(i) $\left(H^{p(\cdot),q}\left(\mathbb{R}^n\right)\right)^* = BMO_{p(\cdot),r}\left(\mathbb{R}^n\right);$

(ii) $f \in H^{p(\cdot),q}(\mathbb{R}^n)$ if and only if $f \in (BMO_{p(\cdot),r}(\mathbb{R}^n))^*$ and $f^* \in L^{p(\cdot),q}(\mathbb{R}^n)$. Indeed, for any $q \in (0, 1]$, if $f \in H^{p(\cdot),q}(\mathbb{R}^n)$, then, by (i), we deduce that

$$f \in \left(H^{p(\cdot),q}\left(\mathbb{R}^n\right)\right)^{**} = \left(BMO_{p(\cdot),r}\left(\mathbb{R}^n\right)\right)^*.$$

It follows from Definition 2.4 that $f^* \in L^{p(\cdot),q}(\mathbb{R}^n)$. On the other hand, for any $q \in (0,1]$, if $f \in (BMO_{p(\cdot),r}(\mathbb{R}^n))^*$ and $f^* \in L^{p(\cdot),q}(\mathbb{R}^n)$, then, by [26, Lemma 2.8], we deduce that $S(\mathbb{R}^n) \subset BMO_{p(\cdot),r}(\mathbb{R}^n)$ and hence $f \in S'(\mathbb{R}^n)$, which, together with Definition 2.4, implies that $f \in H^{p(\cdot),q}(\mathbb{R}^n)$.

In the following, we recall the following notion of the multiresolution analysis on \mathbb{R} (see [20, 24] for more details).

Definition 2.7. An increasing sequence $\{V_j\}_{j \in \mathbb{Z}}$ of closed subspaces in $L^2(\mathbb{R})$ is called a multiresolution analysis (MRA) on \mathbb{R} if

- (i) $\bigcup_{j \in \mathbb{Z}} V_j$ is dense in $L^2(\mathbb{R})$ and $\bigcap_{j \in \mathbb{Z}} V_j = \{\theta\}$, where θ denotes the zero function;
- (ii) for any $j \in \mathbb{Z}$ and $f \in L^2(\mathbb{R}), f \in V_j$ if and only if $f(2^{-j} \cdot) \in V_0$;
- (iii) for any $k \in \mathbb{Z}$ and $f \in L^2(\mathbb{R})$, $f \in V_0$ if and only if $f(\cdot k) \in V_0$;
- (iv) there exists a function $\phi \in L^2(\mathbb{R})$ (called father wavelet) such that $\{\phi_k(\cdot)\}_{k\in\mathbb{Z}} := \{\phi(\cdot k)\}_{k\in\mathbb{Z}}$ forms an orthonormal basis of V_0 .

For any fixed $s \in \mathbb{Z}_+$, according to [24, Theorem 1.61(ii)], we choose the father and the mother wavelets $\phi, \psi \in C_c^{s+1}(\mathbb{R})$, the set of all functions with compact supports having continuous derivatives up to order s + 1, such that $\widehat{\phi}(0) = (2\pi)^{-1/2}$ and, for any $l \in \{0, \ldots, s+1\}$, $\int_{\mathbb{R}} x^l \psi(x) dx = 0$, where $\widehat{\phi}$ denotes the Fourier transform of ϕ ; namely, for any $\xi \in \mathbb{R}$,

$$\widehat{\phi}(\xi) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \phi(y) e^{-i\xi y} dy.$$

In the following, we assume that

(2.5) $\operatorname{supp} \phi, \operatorname{supp} \psi \subset 1/2 + m(-1/2, 1/2),$

namely, $x \in [(1-m)/2, (1+m)/2]$ if and only if $|x - \frac{1}{2}| \leq m/2$. Here $m \in [1, \infty)$ is a positive constant independent of the main parameters involved in the whole paper.

By the standard procedure of tensor products, we can extend the above considerations from 1-dimension to n-dimension. More precisely, let

$$\vec{\theta}_n := (\overbrace{0,\ldots,0}^{n \text{ times}}) \text{ and } E := \{0,1\}^n \setminus \left\{ \vec{\theta}_n \right\}.$$

Assume that \mathcal{D} is the set of all dyadic cubes in \mathbb{R}^n , i.e., for any $Q \in \mathcal{D}$, there exist $j \in \mathbb{Z}_+$ and $k := \{k_1, \ldots, k_n\} \in \mathbb{Z}^n$ such that

(2.6)
$$Q = Q_{j,k} := \left\{ x \in \mathbb{R}^n : k_i \le 2^j x_i < k_i + 1 \text{ for any } i \in \{1, \dots, n\} \right\}.$$

Let mQ be the *m* dilation of *Q* with the same center as *Q* and *m* as in (2.5). According to the tensor product in [20, p. 108], for any $\lambda := (\lambda_1, \ldots, \lambda_n) \in E$, $Q := Q_{j,k}$ with $k := (k_1, \ldots, k_n) \in \mathbb{Z}^n$, $j \in \mathbb{Z}$, and $x = (x_1, \ldots, x_n)$, let

$$\psi_Q^{\lambda}(x) := 2^{jn/2} \psi^{\lambda_1} \left(2^j x_1 - k_1 \right) \cdots \psi^{\lambda_n} \left(2^j x_n - k_n \right)$$

$$\phi_Q(x) := 2^{jn/2} \phi \left(2^j x_1 - k_1 \right) \cdots \phi \left(2^j x_n - k_n \right),$$

where $\psi^0 := \phi$ and $\psi^1 := \psi$.

A family $\{\psi_Q^{\lambda}\}_{Q\in\mathcal{D},\lambda\in E} \subset C^{s+1}(\mathbb{R}^n)$ (the set of all functions having continuous derivatives up to order s+1) is called an *s*-order wavelet system (see [8, p. 6]) if $\{\psi_Q^{\lambda}\}_{Q\in\mathcal{D},\lambda\in E}$ satisfy

- (i) $\left\{\psi_Q^\lambda\right\}_{Q\in\mathcal{D},\lambda\in E}$ forms an orthonormal basis of $L^2\left(\mathbb{R}^n\right)$;
- (ii) ψ_Q^{λ} are compactly supported, namely,

supp
$$\psi_Q^\lambda \subset mQ$$
;

(iii) there exists a positive constant C, depending on s, such that, for any $\beta := (\beta_1, \ldots, \beta_n) \in \mathbb{Z}_+^n$ with $|\beta| := \beta_1 + \cdots + \beta_n \leq s + 1$,

(2.7)
$$\left|\partial^{\beta}\psi_{Q}^{\lambda}(x)\right| \leq C2^{j|\beta|}2^{jn/2}, \quad \forall x \in \mathbb{R}^{n}$$

(iv) for any $\beta := (\beta_1, \dots, \beta_n) \in \mathbb{Z}^n_+$ with $|\beta| \leq s$, $\int_{\mathbb{R}^n} x^\beta \psi^\lambda_Q(x) dx = 0$, here and hereafter, for any $x := (x_1, \dots, x_n) \in \mathbb{R}^n$, $x^\beta := x_1^{\beta_1} \cdots x_n^{\beta_n}$.

See more details in [20, p. 108].

Hence, for any $f \in L^2(\mathbb{R}^n)$, we find that

$$f = \sum_{\lambda \in E} \sum_{Q \in \mathcal{D}} (f, \psi_Q^{\lambda}) \psi_Q^{\lambda} = \sum_{\lambda \in E} \sum_{(j,k) \in \mathbb{Z} \times \mathbb{Z}^n} (f, \psi_{j,k}^{\lambda}) \psi_{j,k}^{\lambda} \text{ in } L^2(\mathbb{R}^n),$$

and for any $k \in \mathbb{Z}^n$, $j \in \mathbb{Z}_+$ with $Q = Q_{j,k} \in \mathcal{D}$ as in (2.6) and $\lambda \in E$,

$$\psi_{j,k}^{\lambda} := \psi_Q^{\lambda}$$

By [20, p. 142], for any $\lambda \in E$, we assume that there exists some set $W^{\lambda} \subset [0,1)^n$ such that $0 < \lambda \leq |W^{\lambda}|$ and $c_0 \chi_{W^{\lambda}} \leq |\psi^{\lambda}|$ for some fixed positive constants γ and c_0 , where

(2.8)
$$\psi^{\lambda} := \psi^{\lambda}_{[0,1)^n}$$

For every $j \in \mathbb{Z}, \lambda \in E, k \in \mathbb{Z}^n$, and $Q := Q_{j,k}$, let

(2.9)
$$W_{j,k}^{\lambda} := \left\{ x \in \mathbb{R}^n : 2^j x - k \in W^{\lambda} \right\} =: W_Q^{\lambda}.$$

Then, for each $\lambda \in E$, $j \in \mathbb{Z}$ and $k \in \mathbb{Z}^n$, we obtain

(2.10)
$$W_{j,k}^{\lambda} \subset Q_{j,k}, \quad |W_{j,k}^{\lambda}| \ge \gamma |Q_{j,k}|$$

and

(2.11)
$$\left|\psi_{j,k}^{\lambda}\right| \ge c_0 \frac{\chi_{W_{j,k}^{\lambda}}}{\left|Q_{j,k}\right|}.$$

In the following, let

(2.12)
$$\Lambda := \{ (\lambda, j, k) : \lambda \in E, (j, k) \in \mathbb{Z} \times \mathbb{Z}^n \}.$$

Further, for any $j \in \mathbb{Z}$, let V_j be the closed subspace of $L^2(\mathbb{R}^n)$ spanned by $\{\phi_Q\}_{|Q|=2^{-jn}}$. It is known that $\{V_j\}_{j\in\mathbb{Z}}$ is an MRA on \mathbb{R}^n , whose definition extends MRA on \mathbb{R} in Definition 2.7 (see [20, Chapter 2] for more details).

Next, we show that the wavelets belong to Campanato spaces with variable exponent.

For any $\alpha \in (0,1]$, $s \in \mathbb{Z}_+$, and $\epsilon \in (0,\infty)$. Denote by $\mathcal{C}_{(\alpha,\epsilon),s}(\mathbb{R}^n)$ the class of all functions $\eta \in C^s(\mathbb{R}^n)$, the set of all functions having continuous derivatives up to order s, such that, for any $\nu \in \mathbb{Z}_+^n$, with $|\nu| \leq s$, and for any $x \in \mathbb{R}^n$,

(2.13)
$$|\partial^{\nu}\eta(x)| \le (1+|x|)^{-n-\epsilon}$$

and, for any $\nu \in \mathbb{Z}_+^n$, with $|\nu| = s$, and for any $x_1, x_2 \in \mathbb{R}^n$,

(2.14)
$$|\partial^{\nu}\eta(x_1) - \partial^{\nu}\eta(x_2)| \le |x_1 - x_2|^{\alpha} \left[(1 + |x_1|)^{-n-\epsilon} + (1 + |x_2|)^{-n-\epsilon} \right].$$

In the following, let $\mathcal{C}_{\epsilon,s}(\mathbb{R}^n) := \mathcal{C}_{(1,\epsilon),s}(\mathbb{R}^n)$. The following results are [7] Proposition 1

The following results are [7, Proposition 1 and Corollary 2], respectively.

Proposition 2.8. Let $p(\cdot) \in C^{\log}(\mathbb{R}^n)$ and $s \in \mathbb{Z}_+$.

(i) if
$$\alpha \in (0,1]$$
, $\varepsilon \in (\alpha + s, \infty)$ and $p_{-} \in (n/(n + \alpha + s), 1]$, then

$$\mathcal{C}_{(\alpha,\epsilon),s}\left(\mathbb{R}^{n}\right)\subset BMO_{p(\cdot),r}\left(\mathbb{R}^{n}\right);$$

(ii) if $\varepsilon \in (1 + s, \infty)$ and $p_{-} \in (n/(n + 1 + s), 1]$, then

$$\mathcal{C}_{\epsilon,s}\left(\mathbb{R}^n\right) \subset BMO_{p(\cdot),r}\left(\mathbb{R}^n\right).$$

Corollary 2.9. Let $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $s \in \mathbb{Z}_+$ and $p_- \in (n/(n+1+s), 1]$. Then, for any $(\lambda, j, k) \in \Lambda$ with Λ as in (2.12), $\psi_{j,k}^{\lambda} \in BMO_{p(\cdot),r}(\mathbb{R}^n)$.

We now recall the definition of $(p(\cdot), r, s)$ -atom introduced in [21].

Definition 2.10. Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ and let $1 < r \leq \infty$. Fix an integer

(2.15)
$$d \in \left(\frac{n}{p_{-}} - n - 1, \infty\right) \cap \mathbb{Z}_{+}.$$

A measurable function a on \mathbb{R}^n is called a $(p(\cdot), r, d)$ -atom if there exists a ball B such that

- (i) supp $a \subset B$;
- (i) supp $a \subset B$; (ii) $||a||_{L^r(\mathbb{R}^n)} \leq \frac{|B|^{1/r}}{||\chi_B||_{L^{p(\cdot)}(\mathbb{R}^n)}}$;
- (iii) $\int_{\mathbb{R}^n} a(x) x^{\alpha} dx = 0$ for all $\alpha \in \mathbb{Z}^n_+$ with $|\alpha| \le d$.

We recall the notion of the variable atomic Hardy-Lorentz space, which is taken from [14, Definition 5.2].

Definition 2.11. Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, let $0 < q \le \infty$, $1 < r \le \infty$ and let d be as (2.15). The variable atomic Hardy-Lorentz space $H^{p(\cdot),q}_{\operatorname{atom},r,d}(\mathbb{R}^n)$ is defined as the space of all $f \in \mathcal{S}'(\mathbb{R}^n)$ which can be decomposed as

(2.16)
$$f = \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \lambda_{i,j} a_{i,j} \quad \text{in} \quad S'(\mathbb{R}^n),$$

where $\{a_{i,j}\}_{i\in\mathbb{Z},j\in\mathbb{N}}$ is a sequence of $(p(\cdot),r,d)$ -atoms, associated with balls $\{B_{i,j}\}_{i\in\mathbb{Z},j\in\mathbb{N}}$, satisfying that, for all $x\in\mathbb{R}^n$ and $i\in\mathbb{Z}$, $\sum_{j\in\mathbb{N}}\chi_{B_{i,j}}(x)\leq A$ with A being a positive constant independent of x and i; and for all $i\in\mathbb{Z}$ and $j\in\mathbb{N}, \lambda_{i,j}:=\tilde{A}2^i \|\chi_{B_{i,j}}\|_{L^{p(\cdot)}(\mathbb{R}^n)}$ with \tilde{A} being a positive constant independent of i and j. Moreover, for $f\in H^{p(\cdot),q}_{\operatorname{atom},r,d}(\mathbb{R}^n)$, we define

$$\|f\|_{H^{p(\cdot),q}_{\operatorname{atom},r,d}(\mathbb{R}^{n})} := \inf\left(\sum_{i\in\mathbb{Z}}\left\|\left(\sum_{j\in\mathbb{N}}\left(\frac{\lambda_{i,j}\chi_{B_{i,j}}}{\|\chi_{B_{i,j}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}}\right)^{\underline{p}}\right)^{\frac{1}{p}}\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q}\right)^{\frac{1}{q}},$$

where the infimum is taken over all decompositions of f as (2.16).

Then, we give the atomic characterization of $H^{p(\cdot),q}(\mathbb{R}^n)$ from [14, Theorem [5.4].

Lemma 2.12. Let $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, let $0 < q \le \infty$, let $r \in (\max\{p_+, 1\}, \infty]$ and let d be as in (2.15). Then $H^{p(\cdot),q}(\mathbb{R}^n) = H^{p(\cdot),q}_{\operatorname{atom},r,d}(\mathbb{R}^n)$ with equivalent quasi-norms.

In the following, we introduce some notation, let

$$\mathcal{U}_{\psi,(\mathbf{i})}f := \left[\sum_{(\lambda,j,k)\in\Lambda} \left|\left\langle f,\psi_{j,k}^{\lambda}\right\rangle\right|^2 \left|\psi_{j,k}^{\lambda}\right|^2\right]^{1/2},$$

$$\mathcal{U}_{\psi,(\mathrm{ii})}f := \left[\sum_{(\lambda,j,k)\in\Lambda} \left|\left\langle f,\psi_{j,k}^{\lambda}\right\rangle\right|^2 \frac{\chi_{Q_{j,k}}}{|Q_{j,k}|}\right]^{1/2},$$
$$\mathcal{U}_{\psi,(\mathrm{iii})}f := \left[\sum_{(\lambda,j,k)\in\Lambda} \left|\left\langle f,\psi_{j,k}^{\lambda}\right\rangle\right|^2 \frac{\chi_{W_{j,k}^{\lambda}}}{|Q_{j,k}|}\right]^{1/2},$$

where Λ is as in (2.12). By Corollary 2.9, we know that $\mathcal{U}_{\psi,(i)}f$, $\mathcal{U}_{\psi,(ii)}f$, and $\mathcal{U}_{\psi,(iii)}f$ are well defined.

Now, we recall the following definition of atoms introduced in [10, Definition 4.17].

Definition 2.13. Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ with $p_+ < r$ and $r \in (1, \infty)$, and let ψ be the mother wavelet. A function $a \in L^2(\mathbb{R}^n)$ is called a $(p(\cdot), r, \psi)$ -atom if there exists a dyadic cube R such that

$$a = \sum_{\lambda \in E} \sum_{Q \subset R, Q \in \mathcal{D}} \left(a, \psi_Q^{\lambda} \right) \psi_Q^{\lambda}$$

supported in mR with m as in (2.5) and

$$\begin{aligned} \left\| \mathcal{U}_{\psi,(\mathrm{ii})} a \right\|_{L^{r}(\mathbb{R}^{n})} &= \left\| \left[\sum_{\lambda \in E} \sum_{Q \subset R, Q \in \mathcal{D}} \left| \left(a, \psi_{Q}^{\lambda}\right) \right|^{2} \frac{\chi_{Q}}{|Q|} \right]^{1/2} \right\|_{L^{r}(\mathbb{R}^{n})} \\ &\leqslant \frac{|mR|^{1/r}}{\|\chi_{mR}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}}. \end{aligned}$$

Remark 2.14. By [8, Remark 2.15], we know that Definition 2.13 is well defined.

The following lemma is just [7, Lemma 1].

Lemma 2.15. Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ with $p_+ < r$ and $r \in (1, \infty)$, and let ψ be the mother wavelet. If a is a $(p(\cdot), r, \psi)$ -atom related to a cube R, then there exists a positive harmless constant c, independent of a, such that a/c is a $(p(\cdot), r, d)$ -atom.

Lemma 2.16 ([21, Lemma 2.4]). Let $1 < u < \infty$. Suppose $p(\cdot) \in C^{\log}(\mathbb{R}^n)$ satisfy $p_- > 1$. Then there exists a positive constant C such that, for any sequence of measurable functions $\{f_j\}_{j=1}^{\infty}$,

$$\left\| \left(\sum_{j=1}^{\infty} \left[\mathcal{M} f_j \right]^u \right)^{1/u} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leqslant C \left\| \left(\sum_{j=1}^{\infty} \left| f_j \right|^u \right)^{1/u} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)}$$

where \mathcal{M} denotes the Hardy-Littlewood maximal operator as in (2.3).

Lemma 2.17 ([14, Theorem 3.4]). Let $1 < u < \infty$ and let $q \in (0, \infty]$. Suppose $p(\cdot) \in C^{\log}(\mathbb{R}^n)$ satisfy $p_- > 1$. Then there exists a positive constant C such that, for any sequence of measurable functions $\{f_j\}_{j=1}^{\infty}$,

$$\left\| \left(\sum_{j=1}^{\infty} \left[\mathcal{M}f_j \right]^u \right)^{1/u} \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)} \leqslant C \left\| \left(\sum_{j=1}^{\infty} \left| f_j \right|^u \right)^{1/u} \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)},$$

where \mathcal{M} denotes the Hardy-Littlewood maximal operator as in (2.3).

3. Intrinsic g-function characterization of $H^{p(\cdot),q}(\mathbb{R}^n)$

In this section, firstly, we recall the definition of intrinsic g-functions from [17]. For any $\alpha \in (0,1]$ and $s \in \mathbb{Z}_+$, let $\mathcal{T}_{\alpha,s}(\mathbb{R}^n)$ be the class of all functions $\eta \in C^s(\mathbb{R}^n)$ such that supp $\eta \subset \{x \in \mathbb{R}^n : |x| \leq 1\}$,

$$\int_{\mathbb{R}^n} \eta(x) x^{\gamma} dx = 0 \quad \text{ for any } \gamma \in \mathbb{Z}^n_+ \text{ with } |\gamma| \le s,$$

and there exists a positive constant C, depending on s, such that, for any $\nu \in \mathbb{Z}^n_+$, with $|\nu| = s$, and any $x_1, x_2 \in \mathbb{R}^n$,

$$\left|\partial^{\nu}\eta\left(x_{1}\right)-\partial^{\nu}\eta\left(x_{2}\right)\right|\leq C\left|x_{1}-x_{2}\right|^{\alpha}$$

For any $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ and $(y,t) \in \mathbb{R}^{n+1}_+ := \mathbb{R}^n \times (0,\infty)$, let

$$A_{\alpha,s}(f)(y,t) := \sup_{\eta \in \mathcal{T}_{\alpha,s}(\mathbb{R}^n)} |f * \eta_t(y)|$$

where $\eta_t(\cdot) := t^{-n} \eta(\frac{\cdot}{t})$ for any $t \in (0, \infty)$. Then the intrinsic *g*-function from [17] is defined by setting, for any $x \in \mathbb{R}^n$,

$$g_{\alpha,s}(f)(x) := \left\{ \int_0^\infty \left[A_{\alpha,s}(f)(x,t) \right]^2 \frac{dt}{t} \right\}^{1/2}.$$

Recall that, for all $f \in S'(\mathbb{R}^n)$, the Littlewood-Paley g-function is defined by setting, for all $x \in \mathbb{R}^n$,

$$g(f)(x) := \left(\int_0^\infty |f * \phi_t(x)|^2 \, \frac{dt}{t}\right)^{1/2}$$

where, $\phi \in S(\mathbb{R}^n)$ is a radial function satisfying [14, (8.1), (8.2) and (8.3)] and, for any $t \in (0, \infty)$, $\phi_t(\cdot) := \frac{1}{t^n} \phi(\frac{\cdot}{t})$.

Recall that $f \in S'(\mathbb{R}^n)$ is said to vanish weakly at infinity if, for every $\psi \in S(\mathbb{R}^n)$, $f * \psi_t \to 0$ in $S'(\mathbb{R}^n)$ as $t \to \infty$ (see [6, p. 50]).

The following result follows from [14, Theorem 8.2].

Lemma 3.1. Let $p(\cdot) \in C^{\log}(\mathbb{R}^n)$ and let $0 < q \leq \infty$. Then $f \in H^{p(\cdot),q}(\mathbb{R}^n)$ if and only if $f \in S'(\mathbb{R}^n)$, f vanishes weakly at infinity and $g(f) \in L^{p(\cdot),q}(\mathbb{R}^n)$. Moreover, for all $f \in H^{p(\cdot),q}(\mathbb{R}^n)$,

 $C^{-1} \|g(f)\|_{L^{p(\cdot),q}(\mathbb{R}^n)} \le \|f\|_{H^{p(\cdot),q}(\mathbb{R}^n)} \le C \|g(f)\|_{L^{p(\cdot),q}(\mathbb{R}^n)},$

where C is a positive constant independent of f.

The following lemma is a special case of [17, Proposition 3.2].

Lemma 3.2. Let $\alpha \in (0,1]$, $s \in \mathbb{Z}_+$ and $r \in (1,\infty)$. Then there exists a positive constant C such that, for any $f \in \mathcal{A}(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} \left[g_{\alpha,s}(f)(x) \right]^r dx \le C \int_{\mathbb{R}^n} |f(x)|^r dx$$

Now we are ready to state and prove the main result of this section.

Theorem 3.3. Let $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $p_+ \in (0,1]$ and $q \in (0,1]$. Suppose that $\alpha \in (0,1], s \in \mathbb{Z}_+$ and $p_- \in (n/n + \alpha + s, 1]$. Then $f \in H^{p(\cdot),q}(\mathbb{R}^n)$ if and only if $f \in (BMO_{p(\cdot),r}(\mathbb{R}^n))^*$, the dual space of $BMO_{p(\cdot),r}(\mathbb{R}^n)$, f vanishes weakly at infinity and $g_{\alpha,s}(f) \in L^{p(\cdot),q}(\mathbb{R}^n)$; moreover, it holds true that

$$\frac{1}{C} \|g_{\alpha,s}(f)\|_{L^{p(\cdot),q}(\mathbb{R}^n)} \le \|f\|_{H^{p(\cdot),q}(\mathbb{R}^n)} \le C \|g_{\alpha,s}(f)\|_{L^{p(\cdot),q}(\mathbb{R}^n)}$$

with C being a positive constant independent of f.

Proof. Let $q \in (0,1], f \in \left(BMO_{p(\cdot),r}\left(\mathbb{R}^n\right)\right)^*$ vanish weakly at infinity and $g_{\alpha,s}(f) \in L^{p(\cdot),q}(\mathbb{R}^n)$. Then, by Proposition 2.8, we find that $f \in \mathcal{S}'(\mathbb{R}^n)$. Notice that, for all $x \in \mathbb{R}^n$, $g(f)(x) \leq g_{\alpha,s}(f)(x)$, it follows that $g(f) \in$ $L^{p(\cdot),q}(\mathbb{R}^n)$. From this and Lemma 3.1, we find that there exists a distribution $\widetilde{f} \in \mathcal{S}'(\mathbb{R}^n)$ such that $\widetilde{f} = f$ in $\mathcal{S}'(\mathbb{R}^n)$, $\widetilde{f} \in H^{p(\cdot),q}(\mathbb{R}^n)$ and $\|\widetilde{f}\|_{H^{p(\cdot),q}(\mathbb{R}^n)} \lesssim$ $\|g(f)\|_{L^{p(\cdot),q}(\mathbb{R}^n)}$, which, together with [14, Lemma 8.4] and the fact that f vanishes weakly at infinity, implies that $f = \tilde{f}$ in $\mathcal{S}'(\mathbb{R}^n)$ and hence

$$\|f\|_{H^{p(\cdot),q}(\mathbb{R}^n)} \sim \|f\|_{H^{p(\cdot),q}(\mathbb{R}^n)} \lesssim \|g(f)\|_{L^{p(\cdot),q}(\mathbb{R}^n)} \lesssim \|g_{\alpha,s}(f)\|_{L^{p(\cdot),q}(\mathbb{R}^n)}.$$

This finishes the proof of the sufficiency of Theorem 3.3.

...

It remains to prove the necessity. For $q \in (0,1]$, let $f \in H^{p(\cdot),q}(\mathbb{R}^n)$. Then, by [14, Lemma 8.4], we see that f vanishes weakly at infinity and, by Lemma 2.12 and [14, Theorem 7.2], we have $f \in (BMO_{p(\cdot),r}(\mathbb{R}^n))^*$. By Lemma 2.12, there exist sequences of $(p(\cdot), \infty, d)$ -atoms $\{a_{i,j}\}_{i \in \mathbb{Z}, j \in \mathbb{N}}$ and nonnegative numbers $\{\lambda_{i,j}\}_{i\in\mathbb{Z},j\in\mathbb{N}}$ such that the series $\sum_{i\in\mathbb{Z}}\sum_{j\in\mathbb{N}}\lambda_{i,j}a_{i,j}$ converges to f in $\mathcal{S}'(\mathbb{R}^n)$ and $\lambda_{i,j} \approx 2^i \left\| \chi_{B_{i,j}} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)}$. For $i_0 \in \mathbb{Z}$, let

$$f = \sum_{i=-\infty}^{i_0-1} \sum_{j\in\mathbb{N}} \lambda_{i,j} a_{i,j} + \sum_{i=i_0}^{\infty} \sum_{j\in\mathbb{N}} \lambda_{i,j} a_{i,j} =: f_1 + f_2.$$

Hence, we get

$$\begin{split} & \left\|\chi_{\{x\in\mathbb{R}^{n}:g_{\alpha,s}(f)(x)>2^{i_{0}}\}}\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \\ &\lesssim \left\|\chi_{\{x\in\mathbb{R}^{n}:g_{\alpha,s}(f_{1})(x)>2^{i_{0}-1}\}}\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})} + \left\|\chi_{\{x\in A_{i_{0}}:g_{\alpha,s}(f_{2})(x)>2^{i_{0}-1}\}}\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \\ &+ \left\|\chi_{\{x\in A_{i_{0}}^{\complement}:g_{\alpha,s}(f_{2})(x)>2^{i_{0}-1}\}}\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \end{split}$$

Y. HE

$$=: J_1 + J_2 + J_3,$$

where $A_{i_0} := \bigcup_{i=i_0}^{\infty} \bigcup_{j \in \mathbb{N}} (4B_{i,j})$ and $\{B_{i,j}\}_{i \in \mathbb{Z}, j \in \mathbb{N}}$ are the balls as in [14, Theorem 5.4].

Let $\delta_1, \delta_2, \delta_3$ and δ be the same as in [14, Theorem 5.4]. We first estimate J_1 . It is obvious that

$$\begin{split} J_{1} \lesssim & \left\| \chi_{\left\{ x \in \mathbb{R}^{n}: \sum_{i=-\infty}^{i_{0}-1} \sum_{j \in \mathbb{N}} \lambda_{i,j} g_{\alpha,s}(a_{i,j})(x) \chi_{4B_{i,j} > 2^{i_{0}-2}} \right\}} \right\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \\ & + \left\| \chi_{\left\{ x \in \mathbb{R}^{n}: \sum_{i=-\infty}^{i_{0}-1} \sum_{j \in \mathbb{N}} \lambda_{i,j} g_{\alpha,s}(a_{i,j})(x) \chi_{(4B_{i,j})} \mathfrak{c} > 2^{i_{0}-2} \right\}} \right\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \\ & =: J_{1,1} + J_{1,2}. \end{split}$$

We now estimate $J_{1,1}$. By Lemma 3.2 and the proof of [14, (5.8)], we obtain

$$J_{1,1} \lesssim 2^{-i_0\delta_1} \left(\sum_{i=-\infty}^{i_0-1} 2^{iq\delta_1} \left\| \sum_{j\in\mathbb{N}} \chi_{B_{i,j}} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)} \right)^{\frac{1}{q}}$$

and

(3.1)
$$\sum_{i_0=-\infty}^{\infty} 2^{i_0 q} \left\| \chi_{\left\{ x \in \mathbb{R}^n : g_{\alpha,s}(f_1) \chi_{4B_{i,j}}(x) > 2^{i_0} \right\}} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)}^q \lesssim \|f\|_{H^{p(\cdot),q}_{\operatorname{atom},r,d}(\mathbb{R}^n)}.$$

Next, we deal with $J_{1,2}$. By the similar argument that used in [26, p. 1564], for all $i \in \mathbb{Z}, j \in \mathbb{N}$ and $x \in (4\chi_{B_i,j})^{\complement}$, we obtain

(3.2)
$$|g_{\alpha,s}(a_{i,j})(x)| \lesssim ||\chi_{B_{i,j}}||_{L^{p(\cdot)}(\mathbb{R}^n)}^{-1} \left(\mathcal{M}(\chi_{B_{i,j}})(x)\right)^{\frac{n+s+\alpha}{n}}$$

Then by the Hölder inequality and a similar argument that used in the proof of [14, (5.10)], we get

$$J_{1,2} \lesssim 2^{-i_0\delta_2} \left(\sum_{i=-\infty}^{i_0-1} 2^{iq\delta_2} \left\| \sum_{j\in\mathbb{N}} \chi_{B_{i,j}} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)} \right)^{\frac{1}{q}}$$

and

$$(3.3) \quad \sum_{i_0=-\infty}^{\infty} 2^{i_0 q} \left\| \chi_{\left\{ x \in \mathbb{R}^n : g_{\alpha,s}(f_1)\chi_{\left(4B_{i,j}\right)} \mathfrak{c}^{(x)>2^{i_0}} \right\}} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)}^q \lesssim \|f\|_{H^{p(\cdot),q}_{\operatorname{atom},r,d}(\mathbb{R}^n)}^q.$$

For I_2 , by an argument similar to that used in the proof of [14, (5.11)], we get

$$J_2 \le \left\|\chi_{A_{i_0}}\right\|_{L^{p(\cdot)}(\mathbb{R}^n)} \lesssim 2^{-i_0\delta_3} \left(\sum_{i=i_0}^{\infty} 2^{i\delta_3 q} \left\|\sum_{j\in\mathbb{N}}\chi_{B_{i,j}}\right\|_{L^{p(\cdot)}(\mathbb{R}^n)}^q\right)^{\frac{1}{q}}$$

and

(3.4)
$$\sum_{i_0=-\infty}^{\infty} 2^{i_0 q} \left\| \chi_{\left\{ x \in A_{i_0}: g_{\alpha,s}(f_2)(x) > 2^{i_0} \right\}} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)}^q \lesssim \|f\|_{H^{p(\cdot),q}_{\operatorname{atom},r,d}(\mathbb{R}^n)}^q.$$

For J_3 , by (3.2), Lemma 2.16 and an argument similar to that used in the proof of [14, (5.12)], we find that

$$J_3 \lesssim 2^{-i_0\delta} \left(\sum_{i=i_0}^{\infty} 2^{i\delta q} \left\| \sum_{j \in \mathbb{N}} \chi_{B_{i,j}} \right\|_{L^{p(\cdot)}}^q \right)^{\frac{1}{q}}$$

and

(3.5)
$$\sum_{i_0=-\infty}^{\infty} 2^{i_0 q} \left\| \chi_{\left\{ x \in \left(A_{i_0}\right)^{\mathfrak{c}} : g_{\alpha,s}(f_2)(x) > 2^{i_0} \right\}} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)}^q \lesssim \|f\|_{H^{p(\cdot),q}_{\operatorname{atom},r,d}(\mathbb{R}^n)}^q$$

Finally, combining (3.1), (3.3), (3.4) and (3.5), we obtain

 $\|g_{\alpha,s}(f)\|_{L^{p(\cdot),q}(\mathbb{R}^n)} \lesssim \|f\|_{H^{p(\cdot),q}(\mathbb{R}^n)}.$

The proof is complete.

Now, we recall a discrete variant of the Littlewood-Paley g-function $\widetilde{g}^{\lambda}(f)$ from [8]. For any $\lambda \in E$, $f \in L^2(\mathbb{R}^n)$, and $x \in \mathbb{R}^n$, let

$$\widetilde{g}^{\lambda}(f)(x) := \left[\sum_{j \in \mathbb{Z}} \left| f * \psi_{2^{-j}}^{\lambda}(x) \right|^2 \right]^{1/2},$$

where ψ^{λ} is as in (2.8).

Lemma 3.4 ([17, Theorem 2.6]). Let $\lambda \in E$, $s \in \mathbb{Z}_+$, $\alpha \in (0, 1]$, and $\varepsilon \in (\max\{s, \alpha\}, \infty)$. Then there exists a positive constant C such that, for any f satisfying

$$(3.6) |f(\cdot)|(1+|\cdot|)^{-n-\varepsilon} \in L^1(\mathbb{R}^n),$$

it holds that

$$\widetilde{g}^{\lambda}(f)(x) \leqslant Cg_{\alpha,s}(f)(x), \quad \forall x \in \mathbb{R}^n.$$

The following conclusion follows from Theorem 3.3 and Lemma 3.4, the details being omitted.

Proposition 3.5. Let $\lambda \in E$, $s \in \mathbb{Z}_+$, $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $p_- \in (n/n + \alpha + s, 1]$ and let $0 < q \leq 1$. If $f \in H^{p(\cdot),q}(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$, then $\tilde{g}^{\lambda}(f) \in L^{p(\cdot),q}(\mathbb{R}^n)$; moreover, there exists a positive constant $C_{(\lambda)}$, depending on λ , such that, for any $f \in H^{p(\cdot),q}(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$,

$$\left\|\widetilde{g}^{\lambda}(f)\right\|_{L^{p(\cdot),q}(\mathbb{R}^{n})} \leqslant C_{(\lambda)} \|f\|_{H^{p(\cdot),q}(\mathbb{R}^{n})}$$

For any $\lambda \in E$, $j \in \mathbb{Z}$, $\nu \in (0, \infty)$, $f \in L^2(\mathbb{R}^n)$, and $x \in \mathbb{R}^n$, we recall a variant of the Peetre type maximal functions from [8] defined by setting,

$$\psi_{j,\nu}^{\lambda,**}(f)(x) := \sup_{y \in \mathbb{R}^n} \frac{\left| f * \psi_{2^{-j}}^{\lambda}(x-y) \right|}{\left[1 + 2^j |y| \right]^{\nu}}$$

From some arguments similar to those used in the proof of [10, Proposition 4.8], we obtain the following result.

Proposition 3.6. Let $s \in \mathbb{Z}_+$, $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $r \in (1, \infty)$, $\nu \in (\max \{1/2, 1/p_-\}, \infty)$ and $q \in (0, 1]$. Then there exists a positive constant $C_{(\lambda,\nu)}$, depending on λ and ν , such that, for any $f \in H^{p(\cdot),q}(\mathbb{R}^n) \cap L^r(\mathbb{R}^n)$,

$$\left\|\left\{\sum_{j=-\infty}^{\infty} \left|\psi_{j,\nu}^{\lambda,**}(f)\right|^{2}\right\}^{1/2}\right\|_{L^{p(\cdot),q}(\mathbb{R}^{n})} \leqslant C_{(\lambda,\nu)}\|f\|_{H^{p(\cdot),q}(\mathbb{R}^{n})}.$$

Proof. By some arguments similar to those used in the proof of [11, p. 271] in 1-dimensional case, for any $j \in \mathbb{Z}$, $f \in L^r(\mathbb{R}^n)$, $\nu \in (0, \infty)$, and $x \in \mathbb{R}^n$, we find that,

$$\psi_{j,\nu}^{\lambda,**}f(x) \lesssim \left[\mathcal{M}\left(\left|f*\psi_{2^{-j}}^{\lambda}\right|^{1/\nu}\right)(x)\right]^{\nu}$$

with the implicit positive constant depending only on λ , ν , and n.

Combining this, the Fefferman-Stein vector-valued maximal inequality, Theorem 3.3 and Lemma 3.4, for any $f \in H^{p(\cdot),q}(\mathbb{R}^n) \cap L^r(\mathbb{R}^n)$, we obtain

$$\begin{split} & \left\| \left[\sum_{j \in \mathbb{Z}} \left| \psi_{j,\nu}^{\lambda,**}(f) \right|^2 \right]^{1/2} \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)} \\ & \lesssim \left\| \left\{ \sum_{j \in \mathbb{Z}} \left[\mathcal{M}\left(\left| \psi_{2^{-j}}^{\lambda} * f \right|^{1/\nu} \right) \right]^{2\nu} \right\}^{1/2} \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)} \\ & \sim \left\| \left\{ \sum_{j \in \mathbb{Z}} \left[\mathcal{M}\left(\left| \psi_{2^{-j}}^{\lambda} * f \right|^{1/\nu} \right) \right]^{2\nu} \right\}^{1/(2\nu)} \right\|_{L^{\nu p(\cdot),\nu q}(\mathbb{R}^n)}^{\nu} \end{split}$$

$$\lesssim \left\| \left\{ \sum_{j \in \mathbb{Z}} \left| \psi_{2^{-j}}^{\lambda} * f \right|^{2} \right\}^{1/(2\nu)} \right\|_{L^{\nu p(\cdot),\nu q}(\mathbb{R}^{n})}^{\nu}$$
$$\sim \left\| \widetilde{g}^{\lambda}(f) \right\|_{L^{p(\cdot),q}(\mathbb{R}^{n})}$$
$$\lesssim \left\| g_{\alpha,s}(f) \right\|_{L^{p(\cdot),q}(\mathbb{R}^{n})}$$
$$\lesssim \left\| f \right\|_{H^{p(\cdot),q}(\mathbb{R}^{n})},$$

where $\alpha \in (0, 1]$, $s \in \mathbb{Z}_+$, and $(p\nu)_- = p_-\nu > 1$. The proof is complete. \Box

4. Wavelet characterizations of $H^{p(\cdot),q}(\mathbb{R}^n)$

In this section, we provide several equivalent characterizations of the variable Hardy-Lorentz space $H^{p(\cdot),q}(\mathbb{R}^n)$ via wavelets.

Let d be an integer satisfying (2.4). By Remark 2.6(ii), it follows that if $f \in H^{p(\cdot),q}(\mathbb{R}^n)$ for $0 < q \leq 1$, then $f \in (BMO_{p(\cdot),r}(\mathbb{R}^n))^*$. Further, from Corollary 2.9, it follows that $\psi_{j,k}^{\lambda} \in BMO_{p(\cdot),r}(\mathbb{R}^n)$. Let $\langle \cdot, \cdot \rangle$ denote the dual relation between $BMO_{p(\cdot),r}(\mathbb{R}^n)$ and $(BMO_{p(\cdot),r}(\mathbb{R}^n))^*$. Hence, following an idea used in [20, p. 177], it follows that $\langle f, \psi_{j,k}^{\lambda} \rangle$ is well defined in the sense of the duality between $BMO_{p(\cdot),r}(\mathbb{R}^n)$ and $(BMO_{p(\cdot),r}(\mathbb{R}^n))^*$.

Now we state the main results of this section.

Theorem 4.1. Let $p(\cdot) \in C^{\log}(\mathbb{R}^n)$, $q \in (0,1]$ and $1 \leq r < \infty$. Let d be an integer satisfying

$$\frac{n}{n+1+d} < p_- \leqslant p_+ \leqslant 1$$

and suppose $\{\psi_{j,k}^{\lambda}\}_{(\lambda,j,k)\in\Lambda}$ is a d-order wavelet system.

For any $f \in (BMO_{p(\cdot),r}(\mathbb{R}^n))^*$, assume that

(4.1)
$$f = \sum_{(\lambda,j,k)\in\Lambda} \left\langle f, \psi_{j,k}^{\lambda} \right\rangle \psi_{j,k}^{\lambda}.$$

Then the following statements are mutually equivalent:

(i) $f \in H^{p(\cdot),q}(\mathbb{R}^n);$ (ii)

$$\|f\|_{(\mathbf{i})} := \left\| \left[\sum_{(\lambda,j,k) \in \Lambda} \left| \left\langle f, \psi_{j,k}^{\lambda} \right\rangle \right|^2 \left| \psi_{j,k}^{\lambda} \right|^2 \right]^{1/2} \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)} < \infty;$$

(iii)

$$\|f\|_{(\mathrm{ii})} := \left\| \left[\sum_{(\lambda,j,k)\in\Lambda} \left| \left\langle f, \psi_{j,k}^{\lambda} \right\rangle \right|^2 \frac{\chi_{Q_{j,k}}}{|Q_{j,k}|} \right]^{1/2} \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)} < \infty;$$

Y. HE

(iv)

$$\|f\|_{(\mathrm{iii})} := \left\| \left[\sum_{(\lambda,j,k)\in\Lambda} \left| \left\langle f, \psi_{j,k}^{\lambda} \right\rangle \right|^2 \frac{\chi_{W_{j,k}^{\lambda}}}{|Q_{j,k}|} \right]^{1/2} \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)} < \infty$$

where, for any $(\lambda, j, k) \in \Lambda$, $W_{j,k}^{\lambda} \subset Q_{j,k}$ is as in (2.9) and

(4.2)
$$\left| W_{j,k}^{\lambda} \right| \sim |Q_{j,k}|$$

with the implicit positive constants independent of (λ, j, k) .

Moreover, all the quasi-norms $\|\cdot\|_{(i)}$, $\|\cdot\|_{(ii)}$, and $\|\cdot\|_{(iii)}$ are equivalent to $\|\cdot\|_{H^{p(\cdot),q}(\mathbb{R}^n)}$.

Proof. We observe that (4.2) follows from (2.10). Then, we only need to prove that (i) through (iv) of Theorem 4.1 are mutually equivalent. Indeed, we prove (i) \Rightarrow (ii) \Rightarrow (iv) \Rightarrow (iii) \Rightarrow (i).

(i) \Rightarrow (ii) Notice that $H^{p(\cdot),q}(\mathbb{R}^n)$ is a quasi-Banach space and $H^{p(\cdot),q}(\mathbb{R}^n) \cap L^r(\mathbb{R}^n)$ with r as in Lemma 2.12 is dense in $H^{p(\cdot),q}(\mathbb{R}^n)$. Hence, it suffices to prove that, for any $f \in H^{p(\cdot),q}(\mathbb{R}^n) \cap L^r(\mathbb{R}^n)$,

$$\left\| \mathcal{U}_{\psi,(\mathbf{i})} f \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)} \lesssim \|f\|_{H^{p(\cdot),q}(\mathbb{R}^n)}$$

Indeed, from the proof of [8, Theorem 1.9], for any $(\lambda, j, k) \in \Lambda$ and $f \in H^{p(\cdot),q}(\mathbb{R}^n) \cap L^r(\mathbb{R}^n)$, we have that,

$$\left|\left(f,\psi_{j,k}^{\lambda}\right)\right| \lesssim 2^{-jn/2} \sup_{y \in Q_{j,k}^{\lambda}} \left|\widetilde{\psi}_{2^{-j}}^{\lambda} * f(y)\right|$$

with $\widetilde{\psi}(x) := \overline{\psi(-x)}$ for any $x \in \mathbb{R}^n$ and, for almost every $x \in \mathbb{R}^n$,

$$\sum_{k \in \mathbb{Z}^n} \left| \left\langle f, \psi_{j,k}^{\lambda} \right\rangle \right|^2 \left| \psi_{j,k}^{\lambda}(x) \right|^2 \lesssim \left[\psi_{j,\nu}^{\lambda,**} f(x) \right]^2,$$

where the implicit positive constants depend only on ν , m, and n with m as in (2.5).

By some arguments similar to [7, (17)], we select $\nu \in (\max\{1/2, 1/p_-\}, \infty)$. Combining these facts and Proposition 3.6, we get

$$(4.3) \qquad \left\| \mathcal{U}_{\psi,(\mathbf{i})} f \right\|_{L^{p(\cdot),q}(\mathbb{R}^{n})}^{p_{-}} \\ \lesssim \left\| \sum_{\lambda \in E} \left\{ \sum_{j=-\infty}^{\infty} \sum_{k \in \mathbb{Z}^{n}} \left| \left\langle f, \psi_{j,k}^{\lambda} \right\rangle \right|^{2} \left| \psi_{j,k}^{\lambda} \right|^{2} \right\}^{1/2} \right\|_{L^{p(\cdot),q}(\mathbb{R}^{n})}^{p_{-}} \\ \lesssim \sum_{\lambda \in E} \left\| \left\{ \sum_{j=-\infty}^{\infty} \sum_{k \in \mathbb{Z}^{n}} \left| \left\langle f, \psi_{j,k}^{\lambda} \right\rangle \right|^{2} \left| \psi_{j,k}^{\lambda} \right|^{2} \right\}^{1/2} \right\|_{L^{p(\cdot),q}(\mathbb{R}^{n})}^{p_{-}}$$

$$\lesssim \sum_{\lambda \in E} \left\| \left\{ \sum_{j=-\infty}^{\infty} \left| \psi_{j,\nu}^{\lambda,**}(f) \right|^2 \right\}^{1/2} \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)}^{p_-}$$
$$\lesssim \|f\|_{H^{p(\cdot),q}(\mathbb{R}^n)}^{p_-},$$

which completes the proof for (i) \Rightarrow (ii).

(ii)
$$\Rightarrow$$
 (iv) It is an easy consequence of the fact (2.11). Moreover, we obtain

(4.4)
$$\left\| \mathcal{U}_{\psi,(\mathrm{iii})} f \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)} \leq \left\| \mathcal{U}_{\psi,(\mathrm{i})} f \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)}$$

(iv) \Rightarrow (iii) By [8, (3.3)], we have that, for any $s \in (0, \infty)$ and $(\lambda, j, k) \in \Lambda$,

(4.5)
$$\chi_{Q_{j,k}} \lesssim \left[\mathcal{M} \left(\chi_{W_{j,k}^{\lambda}} \right) \right]^{1/s}.$$

Moreover, choosing $\frac{1}{e} \in (\max\{1/2, 1/p_-\}, \infty)$, combining (4.5) and the Fefferman-Stein vector valued maximal inequality (see Lemma 2.17) with u replaced by 2/e and $\frac{1}{e} \in (\max\{1/2, 1/p_-\}, \infty)$, we get

$$\begin{aligned} \|f\|_{(\mathrm{ii})} &\lesssim \left\| \left\{ \sum_{(\lambda,j,k)\in\Lambda} \frac{\left| \left\langle f, \psi_{j,k}^{\lambda} \right\rangle \right|^{2}}{|Q_{j,k}|} \left[\mathcal{M} \left(\chi_{W_{j,k}^{\lambda}} \right) \right]^{2/e} \right\}^{1/2} \right\|_{L^{p(\cdot),q}(\mathbb{R}^{n})} \\ &\sim \left\| \left\{ \sum_{(\lambda,j,k)\in\Lambda} \left[\mathcal{M} \left(\left[\frac{\left| \left\langle f, \psi_{j,k}^{\lambda} \right\rangle \right|}{|Q_{j,k}|^{1/2}} \chi_{W_{j,k}^{\lambda}} \right]^{e} \right) \right]^{2/e} \right\}^{e/2} \right\|_{L^{p(\cdot)/e,q/e}(\mathbb{R}^{n})}^{1/e} \\ &\lesssim \left\| \left\{ \sum_{(\lambda,j,k)\in\Lambda} \left[\frac{\left| \left\langle f, \psi_{j,k}^{\lambda} \right\rangle \right|}{|Q_{j,k}|^{1/2}} \chi_{W_{j,k}^{\lambda}} \right]^{2} \right\}^{e/2} \right\|_{L^{p(\cdot)/e,q/e}(\mathbb{R}^{n})}^{1/e} \\ &\sim \left\| \left\{ \sum_{(\lambda,j,k)\in\Lambda} \left| \left\langle f, \psi_{j,k}^{\lambda} \right\rangle \right|^{2} \frac{\chi_{W_{j,k}^{\lambda}}}{|Q_{j,k}|} \right\}^{1/2} \right\|_{L^{p(\cdot),q}(\mathbb{R}^{n})} \\ &\sim \|f\|_{(\mathrm{iii})}, \end{aligned}$$

where

$$\left(\frac{p}{e}\right)_{-} = \frac{1}{e}p_{-} > 1.$$

This shows that (iv) \Rightarrow (iii).

(iii) \Rightarrow (i) From some arguments similar to those used in the proof of (iii) \Rightarrow (i) in [8, Theorem 1.9], we only need to prove that, for any $f \in L^2(\mathbb{R}^n)$ with

Y. HE

 $\mathcal{U}_{\psi,(\mathrm{ii})}f \in L^{p(\cdot),q}(\mathbb{R}^n),$

(4.7)
$$\|f\|_{H^{p(\cdot),q}(\mathbb{R}^n)} \lesssim \|\mathcal{U}_{\psi,(\mathrm{ii})}f\|_{L^{p(\cdot),q}(\mathbb{R}^n)}$$

For any $f \in L^2(\mathbb{R}^n)$ with $\mathcal{U}_{\psi,(\mathrm{ii})} f \in L^{p(\cdot),q}(\mathbb{R}^n)$, we aim to show

(4.8)
$$f = \sum_{Q \in \mathcal{D}} \left(f, \psi_Q^{\lambda} \right) \psi_Q^{\lambda} = \sum_{k \in \mathbb{Z}} \sum_{i \in \Delta_k} b(k, i),$$

where $\{b(k, i) : k \in \mathbb{Z}, i \in \Delta_k\}$ are some multiples of $(p(\cdot), r, \psi)$ -atoms with $p(\cdot)$ and r as in Lemma 2.12, and ψ is the mother wavelet, which will be determined later. For any $k \in \mathbb{Z}$, let

$$\Omega_k := \left\{ x \in \mathbb{R}^n : \mathcal{U}_{\psi,(\mathrm{ii})} f(x) > 2^k \right\},$$
$$\mathcal{D}_k := \left\{ Q \in \mathcal{D} : |Q \cap \Omega_k| \ge \frac{1}{2} |Q|, |Q \cap \Omega_{k+1}| < \frac{1}{2} |Q| \right\}$$

and $\widetilde{\mathcal{D}} := \bigcup_{k \in \mathbb{Z}} \mathcal{D}_k$.

From the proof of [8, Theorem 1.7], we have that, for any $Q \in \widetilde{\mathcal{D}}$, there exists a unique $k \in \mathbb{Z}$ such that $Q \in \mathcal{D}_k$ and, for any $f \in L^2(\mathbb{R}^n)$ such that $\mathcal{U}_{\psi,(\mathrm{ii})}f \in L^{p(\cdot),q}(\mathbb{R}^n)$, and $Q \in \mathcal{D} \setminus \widetilde{\mathcal{D}}$,

(4.9)
$$\langle f, \psi_Q^\lambda \rangle = 0$$

Observe that, due to the nesting property of dyadic cubes, for any $Q \in \mathcal{D}_k$, there exists a unique maximal dyadic cube $\tilde{Q} \in \mathcal{D}_k$ such that $Q \subset \tilde{Q}$. Let $\{\tilde{Q}_k^i \in \mathcal{D}_k : i \in \Delta_k\}$ be the collection of all such maximal dyadic cubes in \mathcal{D}_k . Then

$$\widetilde{\mathcal{D}} = igcup_{k\in\mathbb{Z}} \mathcal{D}_k = igcup_{k\in\mathbb{Z}} igcup_{i\in\Delta_k} \left\{ Q\in\mathcal{D}_k: Q\subset\widetilde{Q}_k^i
ight\}.$$

By (4.8) and (4.9), we find that, for any $f \in L^2(\mathbb{R}^n)$ with $\mathcal{U}_{\psi,(\mathrm{ii})}f \in L^{p(\cdot),q}(\mathbb{R}^n)$,

$$\begin{split} f &= \sum_{\lambda \in E} \sum_{Q \in \mathcal{D}} \left(f, \psi_Q^{\lambda} \right) \psi_Q^{\lambda} \\ &= \sum_{\lambda \in E} \sum_{Q \in \widetilde{\mathcal{D}}} \left(f, \psi_Q^{\lambda} \right) \psi_Q^{\lambda} \\ &= \sum_{\lambda \in E} \sum_{k \in \mathbb{Z}} \sum_{i \in \Delta_k} \left\{ \sum_{\{Q \subset \widetilde{Q}_k^i, Q \in \mathcal{D}_k\}} \left(f, \psi_Q^{\lambda} \right) \psi_Q^{\lambda} \right\} \\ &=: \sum_{k \in \mathbb{Z}} \sum_{i \in \Delta_k} b(k, i), \end{split}$$

where, for any $k \in \mathbb{Z}$ and $i \in \Delta_k$,

$$b(k,i) := \sum_{\lambda \in E} \sum_{\left\{ Q \subset \widetilde{Q}_k^i, Q \in \mathcal{D}_k \right\}} \left(f, \psi_Q^\lambda \right) \psi_Q^\lambda.$$

According to the estimate in [7, p. 754], we know that b(k,i) is a multiple of $(p(\cdot), r, \psi)$ -atom.

Let $m \in \mathbb{N}$ satisfy $2m \ge r$. According to the estimate in [7, (24)], we have

(4.10)
$$\left\| \mathcal{U}_{\psi,(\mathrm{ii})} b(k,i) \right\|_{L^r(\mathbb{R}^n)} \lesssim 2^k \left| \widetilde{Q}_k^i \right|^{1/r}.$$

By some arguments similar to (4.5) and the fact that

$$\left| m \widetilde{Q}_k^i \right| \sim \left| \widetilde{Q}_k^i \right| \lesssim \left| \widetilde{Q}_k^i \cap \Omega_k \right|$$

for any $t \in (0, \infty)$, we deduce that,

(4.11)
$$\chi_{m\widetilde{Q}_{j,k}} \lesssim \left[\mathcal{M}\left(\chi_{\widetilde{Q}_{k}^{i}\cap\Omega_{k}}\right)\right]^{1/t}.$$

This, together with (4.10), the Fefferman-Stein vector-valued maximal inequality, some arguments similar to those used in the estimate of (4.6), and the disjointness of $\{\widetilde{Q}_k^i\}_{i\in\Delta_k}$, implies that

$$\begin{split} \sum_{k\in\mathbb{Z}} \left\| \left[\sum_{i\in\Delta_{k}} \left(\frac{|\lambda(k,i)|}{\left\|\chi_{m}\tilde{Q}_{k}^{i}\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}} \right)^{\underline{p}} \chi_{m}\tilde{Q}_{k}^{i} \right]^{1/\underline{p}} \right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q} \\ &= \sum_{k\in\mathbb{Z}} \left\| \left[\sum_{i\in\Delta_{k}} \left(\frac{\left\|\mathcal{U}_{\psi,(\mathrm{ii})}b(k,i)\right\|_{L^{r}(\mathbb{R}^{n})}}{\left\|m\tilde{Q}_{k}^{i}\right\|^{1/r}} \right)^{\underline{p}} \chi_{m}\tilde{Q}_{k}^{i} \right]^{1/\underline{p}} \right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q} \\ &\lesssim \sum_{k\in\mathbb{Z}} \left\| \left[\sum_{i\in\Delta_{k}} 2^{k\underline{p}}\chi_{m}\tilde{Q}_{k}^{i} \right]^{1/\underline{p}} \right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q} \\ &\lesssim \sum_{k\in\mathbb{Z}} \left\| \left[\sum_{i\in\Delta_{k}} 2^{k\underline{p}}\chi_{\tilde{Q}_{k}^{i}\cap\Omega_{k}} \right]^{1/\underline{p}} \right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q} \\ &\lesssim \sum_{k\in\mathbb{Z}} \left\| \left[2^{k\underline{p}}\chi_{\Omega_{k}} \right]^{1/\underline{p}} \right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q} \\ &\sim \sum_{k\in\mathbb{Z}} 2^{kq} \left\|\chi_{\Omega_{k}}\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q} . \end{split}$$

Hence, by Lemmas 2.12 and 2.15, we get

$$(4.12) \qquad \lesssim \left\{ \sum_{k \in \mathbb{Z}} \left\| \left[\sum_{i \in \Delta_k} \left(\frac{|\lambda(k,i)|}{\left\| \chi_m \tilde{Q}_k^i \right\|_{L^{p(\cdot)}(\mathbb{R}^n)}} \right)^{\underline{p}} \chi_m \tilde{Q}_k^i \right]^{1/\underline{p}} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)} \\ \lesssim \left\| \mathcal{U}_{\psi,(\mathrm{ii})} f \right\|_{L^{p(\cdot),q}(\mathbb{R}^n)}.$$

This implies (iii) \Rightarrow (i).

Hence, (i)-(iv) are mutually equivalent.

Moreover, by (4.3), (4.4), (4.7), and (4.12), we find that each of $\|\cdot\|_{(i)}$, $\|\cdot\|_{(ii)}$, and $\|\cdot\|_{(iii)}$ is equivalent to $\|\cdot\|_{H^{p(\cdot),q}(\mathbb{R}^n)}$. This completes the proof of Theorem 4.1.

From Theorem 4.1, we conclude the following result, see the proof of [8, Corollary 1.10] for more details.

Corollary 4.2. Replacing the assumption (4.1) in Theorem 4.1 by $f \in L^2(\mathbb{R}^n)$, then all the conclusions in Theorem 4.1 still hold true.

References

- A. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. https://doi.org/10.4064/sm-24-2-113-190
- D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. https://doi.org/10.1007/ 978-3-0348-0548-3
- [3] L. Diening, Maximal function on generalized Lebesgue spaces L^{p(.)}, Math. Inequal. Appl. 7 (2004), no. 2, 245-253. https://doi.org/10.7153/mia-07-27
- [4] C. Fefferman, N. M. Rivière, and Y. Sagher, Interpolation between H^p spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75–81. https://doi.org/10.2307/ 1996982
- [5] R. Fefferman and F. Soria, *The space Weak H¹*, Studia Math. 85 (1986), no. 1, 1–16 (1987). https://doi.org/10.4064/sm-85-1-1-16
- [6] G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton Univ. Press, Princeton, NJ, 1982.
- X. Fu, Equivalent characterizations of Hardy spaces with variable exponent via wavelets, Front. Math. China 14 (2019), no. 4, 737–759. https://doi.org/10.1007/s11464-019-0777-5
- [8] X. Fu and D. C. Yang, Wavelet characterizations of Musielak-Orlicz Hardy spaces, Banach J. Math. Anal. 12 (2018), no. 4, 1017–1046. https://doi.org/10.1215/17358787-2018-0010
- [9] X. Fu and D. C. Yang, Wavelet characterizations of the atomic Hardy space H¹ on spaces of homogeneous type, Appl. Comput. Harmon. Anal. 44 (2018), no. 1, 1-37. https://doi.org/10.1016/j.acha.2016.04.001
- [10] J. García-Cuerva and J. M. Martell, Wavelet characterization of weighted spaces, J. Geom. Anal. 11 (2001), no. 2, 241–264. https://doi.org/10.1007/BF02921965
- [11] E. Hernández and G. L. Weiss, A First Course on Wavelets, Studies in Advanced Mathematics, CRC, Boca Raton, FL, 1996. https://doi.org/10.1201/9781420049985

- [12] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math. 36 (2010), no. 1, 33–50. https: //doi.org/10.1007/s10476-010-0102-8
- [13] M. Izuki, E. Nakai, and Y. Sawano, Wavelet characterization and modular inequalities for weighted Lebesgue spaces with variable exponent, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 2, 551–571. https://doi.org/10.5186/aasfm.2015.4032
- [14] Y. Jiao, Y. Zuo, D. Zhou, and L. Wu, Variable Hardy-Lorentz spaces H^{p(·),q}(ℝⁿ), Math. Nachr. 292 (2019), no. 2, 309–349. https://doi.org/10.1002/mana.201700331
- [15] H. Kempka and J. Vybíral, Lorentz spaces with variable exponents, Math. Nachr. 287 (2014), no. 8-9, 938–954. https://doi.org/10.1002/mana.201200278
- [16] T. Kopaliani, Greediness of the wavelet system in $L^{p(t)}(\mathbb{R})$ spaces, East J. Approx. 14 (2008), no. 1, 59–67.
- [17] Y. Liang and D. Yang, Intrinsic square function characterizations of Musielak-Orlicz Hardy spaces, Trans. Amer. Math. Soc. 367 (2015), no. 5, 3225–3256. https://doi. org/10.1090/S0002-9947-2014-06180-1
- [18] J.-L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. Inst. 19 (1964), 5–68.
- [19] H. Liu, The wavelet characterization of the space Weak H¹, Studia Math. 103 (1992), no. 1, 109–117. https://doi.org/10.4064/sm-103-1-109-117
- [20] Y. F. Meyer, Wavelets and operators, translated from the 1990 French original by D. H. Salinger, Cambridge Studies in Advanced Mathematics, 37, Cambridge Univ. Press, Cambridge, 1992.
- [21] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665-3748. https://doi.org/10.1016/ j.jfa.2012.01.004
- [22] W. Orlicz, Uber konjugierte exponentenfolgen, Studia Mathematica 3 (1931), no. 1, 200–211.
- [23] Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators, Integral Equations Operator Theory 77 (2013), no. 1, 123–148. https://doi.org/10.1007/s00020-013-2073-1
- [24] H. Triebel, Theory of function spaces. III, Monographs in Mathematics, 100, Birkhäuser Verlag, Basel, 2006.
- [25] S. Wu, A wavelet characterization for weighted Hardy spaces, Rev. Mat. Iberoamericana 8 (1992), no. 3, 329–349. https://doi.org/10.4171/RMI/127
- [26] C. Zhuo, D. Yang, and Y. Liang, Intrinsic square function characterizations of Hardy spaces with variable exponents, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 4, 1541– 1577. https://doi.org/10.1007/s40840-015-0266-2

YAO HE

SCHOOL OF MATHEMATICS AND STATISTICS CENTRAL SOUTH UNIVERSITY CHANGSHA 410075, P. R. CHINA Email address: heyao1992@csu.edu.cn