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USING ROTATIONALLY SYMMETRIC PLANES TO

ESTABLISH TOPOLOGICAL FINITENESS OF MANIFOLDS

Eric Choi

Abstract. Let (M,p) denote a noncompact manifold M together with
arbitrary basepoint p. In [7], Kondo-Tanaka show that (M,p) can be

compared with a rotationally symmetric plane Mm in such a way that

if Mm satisfies certain conditions, then M is proved to be topologically
finite. We substitute Kondo-Tanaka’s condition of finite total curvature

of Mm with a weaker condition and show that the same conclusion can

be drawn. We also use our results to show that when Mm satisfies certain
conditions, then M is homeomorphic to Rn.

1. Introduction

Let (M,p) denote a complete, noncompact Riemannian manifold M with
arbitrarily chosen basepoint p. Let (Mm, o) denote a rotationally symmetric
plane Mm together with its origin o, where Mm equals R2 equipped with a
smooth, complete Riemannian metric gm := dr2 + m2(r)dθ2 with m(0) = 0
and m′(0) = 1.

Let G be the sectional curvature function for M , and for any meridian µ(t)
emanating from o = µ(0), let Gm(µ(t)) be the curvature at µ(t). We say that
(M,p) has radial curvature bounded below by that of Mm if, along every unit-
speed minimal geodesic γ : [0, a) → M emanating from p = γ(0), we have
G(σt) ≥ Gm(µ(t)) for all t ∈ [0, a) and all 2-dimensional subspaces σt spanned
by γ′(t) and an element of Tγ(t)M .

Given a rotationally symmetric plane Mm, we define a sector of angular
measure δ, V (δ), as

V (δ) := {q ∈ Mm | 0 < θ(q) < δ}.

Likewise we define a closed sector of angular measure δ, V (δ), as

V (δ) := {q ∈ Mm | 0 ≤ θ(q) ≤ δ}.
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The Toponogov comparison theorem was extended in [5] to open complete
manifolds with radial sectional curvature bounded below by the curvature of a
von Mangoldt plane, leading to various applications in [6,8,12] and generaliza-
tions in [7, 9, 10].

We present below the main result of [7], which is foundational to this paper;
recall that a manifold M has finite topological type, or is topologically finite, if
it is homeomorphic to the interior of a compact set with boundary.

Theorem 1.1 (Main Theorem of [7]). Let (M,p) be a complete open Riemann-
ian n-manifold whose radial curvature at basepoint p is bounded below by that
of a noncompact rotationally symmetric plane Mm with finite total curvature
and a sector V (δ), δ > 0 free of cut points. Then M is of finite topological
type.

Theorem 1.1 uses the so-called Isotopy Lemma, which is a part of the the
critical point theory of distance functions by Grove-Shiohama [4], [3], [2, Lemma
3.1], [11, Section 11.1]; recall that given (M,p), a point q ∈ M is a critical
point of d(·, p) (the distance function to p) if, given any v ∈ TqM , there exists
a minimal geodesic γ emanating from q to p such that ∡(γ̇(0), v) ≤ π

2 .

Theorem 1.2 (Isotopy Lemma). Given (M,p), suppose that for R1, R2 with

0 < R1 < R2 ≤ ∞, BR2
(p) \ BR1

(p) has no critical point of d(·, p). Then

BR2(p) \BR1(p) is homeomorphic to ∂BR1(p)× [R1, R2].

The authors of [7] prove Theorem 1.1 by showing that if the conditions are
satisfied, then the critical points of d(·, p) are confined to BR(p), R < ∞.

We modify Theorem 1.1 by replacing the condition of finite total curvature
with the condition that m′(r) be bounded. We state our result formally below.

Theorem 1.3. Let (M,p) be a complete open Riemannian n-manifold whose
radial curvature at basepoint p is bounded below by that of a noncompact rota-
tionally symmetric plane Mm with m′ bounded above and a sector V (δ), δ > 0,
free of cut points. Then M is of finite topological type.

Note that the condition of m′ being bounded above is more general than the
condition of finite total curvature. Indeed, if Mm admits total curvature, then
we have

c(Mm)=

∫ 2π

0

∫ ∞

0

Gm(r)m(r)drdθ=−2π

∫ ∞

0

m′′=2π(1−m′(∞))∈ [−∞, 2π].

So, c(Mm) > −∞ implies m′(∞) ∈ [0,∞). Hence, m′(r) must be bounded
above on all r.

On the other hand, there exists a rotationally symmetric plane such that
total curvature is not admitted butm′(r) is bounded above on all r: Definem(r)
asm(r) = r on [0, 2π] andm(r) = r− 1

2 sin r on (2π,∞). Next, smooth outm(r)
on a neighborhood σ of 2π such that m(r) > 0 on σ. Then m(r) is a smooth
function on [0,∞) that can be extended to a smooth odd function around 0 with
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m(r) > 0 for all r, m(0) = 0, and m′(0) = 1. Hence the metric dr2 +m2(r)dθ2

describes a rotationally symmetric plane. Since m′(r) = 1 − 1
2 cos r does not

converge to a limit as r → ∞, Mm does not admit total curvature. However,
m′(r) = 1− 1

2 cos r is bounded above on all r.
The theorem below is a special case of Theorem 1.3.

Theorem 1.4. Let the radial curvature of (M,p) be bounded below by that of
Mm satisfying the following conditions:

1) sup{m′ | r ≥ 0} = 1.
2) There exists a cut-point-free sector V (δ) with δ > π

2 .
3) Given any r0, there exists r ≥ r0 such that m′ < 1.
Then if p is a critical point of infinity, then M is homeomorphic to Rn,

where n is the dimension of M .

Remark 1.5. If Mm is von Mangoldt, has nonnegative curvature, and is not
isometric to R2, then the conditions in Theorem 1.4 are satisfied.
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author is deeply grateful to his thesis advisor, Igor Belegradek (Georgia Insti-
tute of Technology), for helping the author obtain the results in this paper.
The author would also like to pay his deep respects to Kei Kondo and Minoru
Tanaka for their pioneering work; without the foundation that they laid, this
paper would not have been possible.

Remark 1.6. This paper reflects changes in the corresponding content in the
author’s Ph.D thesis. The changes are in the statements and/or proofs of
Theorem 1.4 and Lemmas 4.4, 4.5, and 4.7.

2. Notations, conventions, and definitions

All geodesics are parametrized by arclength. The term segments refers to
minimizing geodesics. Let ∂r, ∂θ denote the vector fields dual to dr, dθ on
R2. Given q ̸= o, denote its polar coordinates by θq, rq. Let γq, µq, τq
denote the geodesics defined on [0,∞) that start at q in the direction of ∂θ, ∂r,
−∂r, respectively. We refer to τq|(rq,∞) as the meridian opposite q; note that
τq(rq) = o. Also set κγ(t) := ∡(γ̇(t), ∂r).

A geodesic is called escaping if its image is unbounded; for example, any
ray is escaping.

We write ṙ, θ̇, and γ̇ for the derivatives of rγ(t), θγ(t), and γ(t) by t, while

m′ denotes dm
dr , and proceed similarly for higher derivatives.

3. Turn angle formula for geodesics

A geodesic γ in Mm – {o} is called counterclockwise if d
dtθγ(t) > 0 and clock-

wise if d
dtθγ(t) < 0 for some (or equivalently any) t. A geodesic in Mm is

clockwise, counterclockwise, or can be extended to a geodesic through o. If
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γ is clockwise, then it can be mapped to a counterclockwise geodesic by an
isometric involution of Mm.

Convention. Unless stated otherwise, any geodesic in Mm that we consider is
either tangent to a meridian or counterclockwise.

Due to this convention the Clairaut constant and the turn angle defined
below are nonnegative, which will simplify notations.

For a geodesic γ : (t1, t2) → Mm that does not pass through o, we define the
turn angle Tγ of γ as

Tγ :=

∫
γ

dθ =

∫ t2

t1

θ̇γ(t)ds = θγ(t2) − θγ(t1).

Note that Tγ ∈ [0,∞] as θ̇ = c/m2 ≥ 0. Since γ is unit speed, we have

(ṙ)2 + m2θ̇2 = 1. Combining this with θ̇ = c/m2 gives ṙ = sign(ṙ)
√

1− c2

m2 ,

which yields a useful formula for the turn angle: if γ is never tangent to a
meridian or a parallel, so that sign(ṙγ(t)) is a nonzero constant, then

dθ

dr
=

θ̇

ṙ
= sign(ṙγ(t))Fc(r) where Fc :=

c

m
√
m2 − c2

.

Thus if (t1, t2) is the domain of γ and ri := rγ(ti), then

Tγ = sign(ṙ)

∫ r2

r1

Fc(r)dr.

Since c2 ≤ m2, this integral is finite except possibly when some ri is in the set
{∞, m−1(c)}, in which cases it converges at ri = ∞ if and only if

∫∞
1

m−2dr
converges, and converges at m(ri) = c if and only if m′(ri) ̸= 0.

4. Proof of Theorems 1.1 and 1.4

Below we state what is called the generalized Toponogov Comparison The-
orem, developed in [7]:

Theorem 4.1. Let the radial curvature of (M,p) be bounded below by that
of Mm. Assume that Mm admits a sector V (δ) for some δ ∈ (0, π) that has
no pair of cut points. Then, for every geodesic triangle △(pxy) in M with
∡(xpy) < δ, there exists a geodesic triangle △(ox̃ỹ) in V (δ) such that

d(o, x̃) = d(p, x), d(o, ỹ) = d(p, y), d(x̃, ỹ) = d(x, y)

and that

∡(xpy) ≥ ∡(x̃oỹ), ∡(pxy) ≥ ∡(ox̃ỹ), ∡(pyx) ≥ ∡(oỹx̃).

Lemma 4.2 (Lemma 4.11, [7]). Let the radial curvature of (M,p) be bounded
below by that of Mm. Assume that Mm admits a sector V (δ) for some δ ∈ (0, π)
that has no pair of cut points. If a geodesic triangle △pxy in M admits a
geodesic triangle △ox̃ỹ in V (δ) satisfying

d(o, x̃) = d(p, x), d(o, ỹ) = d(p, y), d(x̃, ỹ) = d(x, y),
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then

∡(pxy) ≥ ∡(ox̃ỹ) and ∡(pyx) ≥ ∡(oỹx̃).

Lemma 4.3 (Lemma 3.9, [1]). If γ : [0,∞) → Mm is a geodesic with finite
turn angle, then γ is escaping.

Note. From this point on, set N := sup{m′(r) | r ≥ 0}. We will always
assume that N < ∞.

Lemma 4.4. Given q ∈ Mm, γq : [0,∞) → Mm has turn angle ≥ π
2N . If there

exists r ≥ rq where m′ < N , then the turn angle of γq > π
2N .

Proof. If γq is not an escaping geodesic, then it must have infinite turn angle
by Lemma 4.3. So assume γq is escaping. Let c be the Clairaut constant of
γq, and let ρ be the value at which Nρ = c = m(rq). Since N ≥ m′(r) for all
r ≥ rq, we have

M∑
n=1

c∆r

m(rq+n∆r)
√

m2(rq+n∆r)−c2
≥

M∑
n=1

c∆r

N(ρ+n∆r)
√
(N(ρ+n∆r))2−c2

.

This implies

Tγq
=

∫ ∞

rq

cdr

m(r)
√
m2(r)− c2

≥
∫ ∞

ρ

cdr

Nr
√
(Nr)2 − c2

.

Now we show that the second integral equals π
2N . Applying the change of

variables r := ct
N , we have∫ ∞

1

c c
N dt

ct
√

(ct)2 − c2
=

∫ ∞

1

dt

N t
√
t2 − 1

= − 1

N
arccot(

√
t2 − 1)|∞1 =

π

2N
.

It follows that if m′ < N for some r ≥ rq, then Tγq
> π

2N . □

Lemma 4.5. Given q ∈ Mm, assume that there exists a sector V (δ) free of cut
points. If σ is a ray emanting from q such that κσ ≥ π

2 , then Tσ ≥ min( π
2N , δ).

If furthermore m′ < N for some r ≥ rq and δ > π
2N , then Tσ > π

2N .

Proof. If γq is not escaping, then it has infinite turn angle by Lemma 4.3. If γq
is escaping, then Tγq ≥ π

2N by Lemma 4.4. Choose ϵ < min( π
2N , δ) and assume

q ∈ ∂V (ϵ). Now γq and V (ϵ) determine a bounded region. For small t > 0,
because κσ ≥ π

2 , σ(t) lies in this region. In order for σ to escape this region,

either Tσ > ϵ or it must intersect γq within V (ϵ). But the latter is impossible,
so Tσ > ϵ. Since ϵ was arbitrary, we have Tσ ≥ min( π

2N , δ).
Suppose m′ < N for some r ≥ rq and δ > π

2N . Then Tγq
> π

2N by Lemma

4.4. Hence, γq and V ( π
2N ) determine a bounded region, and for small t >

0, because κσ ≥ π
2 , σ(t) lies in this region. In order for σ to escape this

region, either Tσ > π
2N or it must intersect γq within V ( π

2N ). But the latter is
impossible. □
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Lemma 4.6. Let the radial curvature of (M,p) be bounded below by that of
Mm with a cut-point-free sector V (δ), let q be a critical point of d(·, p), and
let γ : [0,∞) → M be a ray emanating from p. Let α be a minimal geodesic
connecting p = α(0) to q such that ∡(γ̇(0), α̇(0)) =: θ < δ. Then there exists a
ray η̃ ⊂ Mm with Tη̃ ≤ θ and κη̃ ≥ π

2 .

Proof. If q is a critical point of d(·, p), then we can always construct a triangle
⊂ M with q a vertex and one of the sides ⊂ γ. Note that γ cannot pass through
q; indeed, if it did, then γ|[0,d(p,q)] would be the only minimal geodesic joining
q to p, which is impossible since q is a critical point of d(·, p).

Let ηj be a minimal geodesic joining q to γ(tj), where tj → ∞ as j → ∞.
Consider the sequence of triangles △(pqγ(tj)), consisting of edges α, ηj , and
γ|[0,tj ]. Since ∡(qpγ(tj)) = θ for each j, the generalized Toponogov theorem im-
plies that there exists a sequence of comparison triangles △oq̃γ̃(tj) ⊂ Mm with
corresponding sides (all minimal geodesics) of equal length and corresponding
angles dominated by those in △pqγ(tj). In particular, △oq̃γ̃(tj) ⊂ V (θ).

Since ℓ(ηj) → ∞ as j → ∞, we have ℓ(η̃j) → ∞ as j → ∞. Hence {η̃j}
must subconverge to a ray η̃. Since Tη̃j

≤ θ for each j, we have Tη̃ ≤ θ.
Since q is a critical point of d(·, p), there exists a minimal geodesic σ ema-

nating from p to q such that ∡(−σ̇(d(p, q)), η̇j(0)) ≤ π
2 . Let △pσ(d(p, q))γ(tj)

denote the triangle consisting of the edges σ, ηj , and γ|[0,tj ]. Since

△pσ(d(p, q))γ(tj)

has the same side lengths as △pqγ(tj) (with edges α, ηj , and γ|[0,tj ]), it ad-
mits the triangle △oq̃γ̃(tj) satisfying the angle inequalities in Lemma 4.2. In
particular, ∡(oq̃γ̃(tj)) ≤ ∡(−σ̇(d(p, q)), η̇j(0)) ≤ π

2 . Since the segment joining
o to q̃ is a subarc of a meridian, we have κη̃j

≥ π
2 for each j. Hence, in the

limit, κη̃ ≥ π
2 . □

Lemma 4.7. Let the radial curvature of (M,p) be bounded below by that of
Mm with V (δ) free of cut points, let q be a critical point of d(·, p), let γ be a ray
emanating from p, and let α be a minimal geodesic joining p = α(0) to q. Then
∡(γ̇(0), α̇(0)) ≥ min( π

2N , δ). Furthermore, if m′ < N for some r ≥ rq̃, where
q̃ ∈ Mm satisfies d(p, q) = d(o, q̃), and if δ > π

2N , then ∡(γ̇(0), α̇(0)) > π
2N .

Proof. Suppose ∡(γ̇(0), α̇(0)) < min( π
2N , δ). Lemma 4.6 implies that there

exists a ray η̃ ⊂ Mm with Tη̃ < min( π
2N , δ) and κη̃ ≥ π

2N . But Lemma 4.5
implies Tη̃ ≥ min( π

2N , δ), a contradiction.
Now suppose m′ < N for some r ≥ rq̃ and δ > π

2N , and assume ∡(γ̇(0), α̇(0))
≤ π

2N . Lemma 4.6 implies that there exists a ray η̃ ⊂ Mm with Tη̃ ≤ π
2N . But

Lemma 4.5 implies Tη̃ > π
2N , a contradiction. □

Proof of Theorem 1.3. We prove the claim by showing that {qi}, the set of
critical points of d(·, p), is bounded. Suppose the set is unbounded. Let αi

be a minimal geodesic emanating from p to qi. Since ℓ(αi) → ∞, {αi} must
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subconverge to a ray γ emanating from p. In particular, there exists αi such
that ∡(γ̇(0), α̇i(0)) < min(δ, π

2N ). But this is impossible by Lemma 4.7. □

Proof of Theorem 1.4. We prove the claim by showing that M has no critical
point of d(·, p). Suppose q were a critical point of d(·, p), and let α be a minimal
geodesic joining p = α(0) to q. For any ray γ emanating from p = γ(0), Lemma
4.7 implies ∡(α̇(0), γ̇(0)) > π

2N = π
2 , the last equality holding because the

conditions of the theorem give N = 1. But since p is a critical point of infinity,
∡(α̇(0), γ̇(0)) ≤ π

2 for some ray γ emanating from p, a contradiction. □
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