DOI QR코드

DOI QR Code

Improve H2S Gas Sensing Characteristics through SnO2 Microparticle Surface Modification and Ti Nanoparticle Decoration using Tip Sonication

Tip sonication을 이용한 SnO2 마이크로 입자 표면 개질 및 Ti 나노 입자 장식을 통한 H2S 가스 감지 특성 향상

  • Ji Yeon Shin (School of Advanced Science and Technology Convergence, Kyungpook National University) ;
  • Chan Gyu Kim (Department of Nano & Advanced Materials Science and Engineering, Kyungpook National University) ;
  • Ji Myeong Park (Department of Nano & Advanced Materials Science and Engineering, Kyungpook National University) ;
  • Hong Nhung Le (Department of Materials Science and Engineering, Kangwon National University) ;
  • Jeong Yun Hwang (Department of Materials Science and Engineering, Yonsei University) ;
  • Myung Sik Choi (School of Advanced Science and Technology Convergence, Kyungpook National University)
  • 신지연 (경북대학교 미래과학기술융합학부) ;
  • 김찬규 (경북대학교 나노신소재공학과) ;
  • 박지명 (경북대학교 나노신소재공학과) ;
  • 홍능레 (강원대학교 신소재공학과) ;
  • 황정윤 (연세대학교 신소재공학과) ;
  • 최명식 (경북대학교 미래과학기술융합학부)
  • Received : 2024.03.05
  • Accepted : 2024.03.25
  • Published : 2024.03.31

Abstract

In this study, the H2S gas sensing characteristics were evaluated using surface-modified SnO2 microparticles by tip sonication. The surface-modified SnO2 microparticles were synthesized using the following sequential process. First, bare SnO2 microparticles were synthesized via a hydrothermal method. Then, the surfaces of bare SnO2 microparticles were modified with Ti nanoparticles during tip sonication. The sensing characteristics of SnO2 microparticles modified with Ti were systematically investigated in the range of 100-300℃, compared with the bare SnO2 microparticles. In this study, we discuss in detail the improved H2S sensing characteristics of SnO2 microparticles via Ti nanoparticle modification.

Keywords

Acknowledgement

이 논문은 2021학년도 경북대학교 신임교수 정착연구비에 의하여 연구되었음.

References

  1. C. Jia, T. Dong, M. Li, P. Wang, and P. Yang, "Preparation of anatase/rutile TiO2/SnO2 hollow heterostructures for gas sensor", J. Alloys. Compd., Vol. 769, pp. 521-531, 2018.
  2. G. Balanagireddy, A. Narayana, and M. Roopa, "Deployment of low-cost green synthesized SnO2 and CuO nanoparticles bi-layer based transistor for H2S detection", Results in Chemistry 7, Vol. 7, pp. 101322(1)-101322(7), 2024.
  3. H. Liu, S. P. Gong, Y. X. Hu, J. Q. Liu, and D. X Zhou, "Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors", Sens. Actuators B Chem., Vol. 140, No.1, pp. 190-195, 2009.
  4. M. S. Choi, A. Mirzaei, H. G. Na, S. W. Kim, D. E. Kim, K. H. Lee, C. H. Jin, and S. W. Choi, "Facile and fast decoration of SnO2 nanowires with Pd embedded SnO2-x nanoparticles for selective NO2 gas sensing", Sens. Actuators B Chem., Vol. 340, p. 129984, 2021.
  5. J. H. Bang, N. G. Lee, A. Mirzaei, M. S. Choi, H. S. Choi, H. W. Park, H. T. Jeon, S. S. Kim, and H. W. Kim, "SnS-functionalized SnO2 nanowires for low-temperature detection of NO2 gas", Mater. Charact., Vol. 175, pp. 110986, 2021.
  6. S. B. Han and N. H. Kim, "A Study on the Improvement of Semiconductor Sensor Utilization Methods", Proc. of the Korean Institute of Information and Commucation Sciences Conference, pp. 62-64, Kunsan, Korea, 2021.
  7. S. W. Kim, N. R. Kim, J. B. Kwon, J. K. Kim, D. G. Jung, S. H. Kong, and D. Jung, "Sensitivity enhancement of H2 gas sensor using PbS quantum dots", J. Sens. Sci. Technol., Vol. 29, No. 6, pp. 388-393, 2020.
  8. J. H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Improving the hydrogen sensing properties of SnO2 nanowirebased conductometric sensors by Pd-decoration", Sens. Actuator B Chem., Vol. 285, No. 15, pp. 358-367, 2019.
  9. A. Mirzaei, J. H. Kim, H. W. Kim, and S. S. Kim, "How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature", Sens. Actuator B Chem., Vol. 258, pp. 270-294, 2018.
  10. D. Pravarthana, A. Tyagi, T. C. Jagadale, W. Prellier, and D. K. Aswal, "Highly sensitive and selective H2S gas sensor based on TiO2 thin films", Appl. Surf. Sci., Vol. 549, pp. 149281(1)-149281(7), 2021.
  11. J. Li, C. Chen, J. Li, S. Li, and C. J. Dong, "Synthesis of tinglycerate and it conversion into SnO2 spheres for highly sensitive low-ppm-level acetone detection", J. Mater. Sci. Mater. Electron., Vol. 31, pp. 16539-16547, 2020.
  12. W. Zuo, P. Xu, Y. Li, and J. Liu, "Direct Growth of Bismuth Film as Anode for Aqueous Rechargeable Batteries in LiOH, NaOH and KOH Electrolytes", Nanomaterials, Vol. 5, pp. 1756-1765, 2015.
  13. J. Zhu, Y. Cheng, W. Zhang, J. Zhao, Q. Sun, X. Hu, and H. Miao, "Interfacial charge and surface defect regulation for high-efficiency CdIn2S4-based photoanodes", Appl. Surf. Sci., Vol. 601, p. 154188, 2022.
  14. T. Yang, M. Zhu, K. Gu, C. Zhai, Q. Zhao, X. Yang, and M. Zhang, "Facile synthesis of SnO2 nanoparticles for improved formaldehyde detection", New J. Chem., Vol. 42, No. 16, pp. 13612-13618, 2018.
  15. S. Ni, F. Guo, D. Wang, S. Jiao, J. Wang, Y. Zhang, B. Wang, P. Feng, and L. Zhao, "Modification of TiO2 nanowire arrays with Sn doping as photoanode for highly efficient dye-sensitized solar cells", Crystals, Vol. 9, No. 2, pp. 113(1)-113(13), 2019.
  16. H. Chen, D. Liu, Y. Wang, C. Wang, T. Zhang, P. Zhang, H. Sarvari, Z. Chen, and S. Li, "Enhanced performance of planar perovskite solar cells using low-temperature solutionprocessed Al-doped SnO2 as electron transport layers", Nanoscale Res. Lett., Vol. 12, pp. 1-6, 2017.
  17. F. Zhou, Z. Zhang, Y. Jiang, G. Yu, Q. Wang, and W. Liu, "One-step in situ preparation of flexible CuS/TiO2/polyvinylidene fluoride fibers with controlled surface morphology for visible light-driven photocatalysis", J. Phys. Chem. Solids, Vol. 144, p. 109512, 2020.
  18. S. C. Ray, D. K. Mishra, A.B. Panda, H. T. Wang, S. B. Mitra, and W. F. Pong, "Temperature-Dependent Electronic Structure of TiO2 Thin Film Deposited by the Radio Frequency Reactive Magnetron Sputtering Technique: X ray Absorption Near-Edge Structure and X ray Photoelectron Spectroscopy", J. Phys. Chem. C, Vol. 126, No. 20, pp. 8947-8952, 2022.
  19. B. Lan, S. Huang, C. Ye, Q. Qin, J. Yan, and Y. Wu, "Enhanced electrochemical performance of Sn-doped MnO2 and study on morphology evolution", J. Alloys. Compd., Vol. 788, pp. 302-310, 2019.
  20. J. Li, M. Wang, and J. Huang, "Bio-inspired hierarchical nanofibrous SnS/C composite with enhanced anodic performances in lithium-ion batteries", J. Alloys. Compd., Vol. 860, p. 157897, 2021.
  21. P. Tan, L. Yang, H. Liu, Y. Zhang, B. Zhou, and J. Pan, "CdS QDs decorated on 3D flower-like Sn3O4: a hierarchical photocatalyst with boosted charge separation for hydrogen production", New J. Chem., Vol. 48, No.1, pp. 300-308, 2024.
  22. P. Chetri and J. C. Dhar, "Modification of defects in SnO2 nanowire arrays by gallium doping for enhanced photodetection", J. Alloys. Compd., Vol. 899, p. 163402, 2022.
  23. M. U. Yousaf, E. Pervaiz, S. Minallah, M. J. Afzal, L. H. Hong, and M. Yang, "Tin oxide quantum dots decorated graphitic carbon nitride for enhanced removal of organic components from water: Green process", Results. Phys., Vol. 14, pp. 102455(1)-102455(11), 2019.
  24. H. B. Lee, N. Kumar, M. M. Ovhal, Y. J. Kim, Y. M. Song, and J. W. Kang, "Dopant-free, amorphous-crystalline heterophase SnO2 electron transport bilayer enables> 20% efficiency in triple-cation perovskite solar cells", Adv. Funct. Mater., Vol. 30, No. 24, pp. 2001559(1)-2001559(21), 2020.
  25. N. Gmani, D. Pravarthana, A. Tyagi, T. C. Jagadale, W. Prellier, and D. K. Aswal, "Highly sensitive and selective H2S gas sensor based on TiO2 thin films", Appl. Surf. Sci., Vol. 549, pp. 149281(1)-149281(7), 2021.
  26. W. Yan, X. Zeng, G. Wu, W. Jiang, D. Wei, M. Ling, H. Zhou, and C. Guo, "Raspberry-like hollow SnO2-based nanostructures for sensing VOCs and ammonia", J. Mater. Sci. Mater. Electron., Vol. 31, pp. 14165-14173, 2020.
  27. S. R. Gawali, V. L. Patil, V. G. Deonikar, S. S. Patil, D. R. Patil, P. S. Patil, and J. Pant, "Ce doped NiO nanoparticles as selective NO2 gas sensor", J. Phys. Chem. Solids, Vol. 114, pp. 28-35, 2018.
  28. T. Yang, Q. Yang, Y. Xiao, P. Sun, Z. Wang, Y. Gao, J. Ma, Y. Sun, and G. Lu, "A pulse-driven sensor based on ordered mesoporous Ag2O/SnO2 with improved H2S-sensing performance", Sens. Actuators B Chem., Vol. 228, pp. 529-538, 2016.
  29. C. Xiangfeng, J. Dongli, G. Yu, and Z. Chenmou, "Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method", Sens. Actuators B Chem., Vol. 120, No.1, pp. 177-181, 2006.
  30. M. S. Choi, J. Ahn, M. Y. Kim, A. Mirzaei, S. M. Choi, D. W. Chun, C. H. Jin, and K. H. Lee, "Changes in the crystal structure of SnO2 nanoparticles and improved H2S gas-sensing characteristics by Al doping", Appl. Surf. Sci., Vol. 565, p. 150493, 2021.
  31. M. S. Tong, G. R. Dai, Y. D. Wu, and D. S. Gao, "High sensitivity and switching-like response behavior of SnO2-AgSnO2 element to H2S at room temperature", J. Mater. Sci. Mater. Electron., Vol. 11, pp. 661-665, 2000.
  32. P. H. Phuoc, C. M. Hung, N. V. Toan, N. V. Duy, N. D. Hoa, and N. V. Hieu, "One-step fabrication of SnO2 porous nanofiber gas sensors for sub-ppm H2S detection", Sens. Actuators A Phys., Vol. 303, p. 111722, 2020.