Acknowledgement
이 연구는 금오공과대학교 학술연구비로 지원되었음(2021)
References
- D. Tomotoshi and H. Kawasaki, Surface and interface designs in copper-based conductive inks for printed/flexible electronics, Nanomaterials, 10, 1689 (2020).
- D. F. Fernandes, C. Majidi, and M. Tavakoli, Digitally printed stretchable electronics: A review, J. Mater. Chem. C, 7, 14035-14068 (2019). https://doi.org/10.1039/C9TC04246F
- S. Huang, Y. Liu, Y. Zhao, Z. Ren, and C. F. Guo, Flexible electronics: Stretchable electrodes and their future, Adv. Funct. Mater., 29, 1805924 (2019).
- N. Matsuhisa, X. Chen, Z. Bao, and T. Someya, Materials and structural designs of stretchable conductors, Chem. Soc. Rev., 48, 2946-2966 (2019). https://doi.org/10.1039/C8CS00814K
- Y. Huang, X. Fan, S.-C. Chen, and N. Zhao, Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing, Adv. Funct. Mater., 29, 1808509 (2019).
- S. Khan, S. Ali, and A. Bermak, Recent developments in printing flexible and wearable sensing electronics for healthcare applications, Sensors, 19, 1230 (2019).
- Y. Yu, H. Y. Y. Nyein, W. Gao, and A. Javey, Flexible electrochemical bioelectronics: The rise of in situ bioanalysis, Adv. Mater., 32, 902083 (2020).
- Y. Ma, Y, Zhang, S. Cai, Z. Han, X. Liu, F. Wang, Y. Cao, Z. Wang, H. Li, Y. Chen, and X. Feng, Flexible hybrid electronics for digital healthcare, Adv. Mater., 32, 1902062 (2020).
- Y. Z, Zhang, Y. Wang, T. Cheng, L. Q. Yao, X. Li, W. Y. Lai, and W. Huang, Printed supercapacitors: Materials, printing and applications, Chem. Soc. Rev., 48, 3229-3264 (2019). https://doi.org/10.1039/C7CS00819H
- H. Li and J. Liang, Recent development of printed micro-supercapacitors: Printable materials, printing technologies, and perspectives, Adv. Mater., 32, 1805864 (2020).
- S. Naghdi, K. Y. Rhee, D. Hui, and S. J. Park, A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications, Coatings, 8, 278 (2018).
- L. Nayak, S. Mohanty, S. K. Nayak, and A. Ramadoss, A review on inkjet printing of nanoparticle inks for flexible electronics, J. Mater. Chem. C, 7, 8771-8795 (2019). https://doi.org/10.1039/C9TC01630A
- M. Hu, J. Sun, and J. Yang, Copper inks for printed electronics, Nanoscale, 14, 16003 (2022).
- Q. Huang and Y. Zhu, Printing conductive nanomaterials for flexible and stretchable electronics: A review of materials, processes, and applications, Adv. Mater. Technol., 4, 1800546 (2019).
- R. Khazaka, L. Mendizabal, and D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability, Electro. Mater., 43, 2459-2466 (2014). https://doi.org/10.1007/s11664-014-3202-6
- S. Lee, S. Han, Y. Kim, and K. Jang, Copper sintering pastes with various polar solvents and acidic activators, ACS Omega, 8, 39135-39142 (2023). https://doi.org/10.1021/acsomega.3c04245
- S. Bhuvaneshwari and N. Gopalakrishnan, Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing, J. Colloid Interface Sci., 480, 76-84 (2016). https://doi.org/10.1016/j.jcis.2016.07.004
- B. J. Hansen, H. Chan, J. Lu, G. Lu, and J. Chen, Short-circuit diffusion growth of long bi-crystal CuO nanowires, Chem. Phys. Lett., 504, 41-45 (2011). https://doi.org/10.1016/j.cplett.2011.01.040
- M. Chen, Y. Yue, and Y. Ju, Growth of metal and metal oxide nanowires driven by the stress-induced migration, J. Appl. Phys., 111, 104305 (2012).
- L. Yuan, Y. Wang, R. Mema, and G. Zhou, Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals, Acta Mater., 59, 2491-2500 (2011). https://doi.org/10.1016/j.actamat.2010.12.052
- Y. Li, T. Qi, M. Chen, and X. Fei, Mixed ink of copper nanoparticles and copper formate complex with low sintering temperatures, J. Mater. Sci.: Mater. Electron., 27, 11432-11438 (2016). https://doi.org/10.1007/s10854-016-5269-8
- W. Marchal, A. Longo, V. Briois, K. Van Hecke, K. Elen, M. K. Van Bael, and A. Hardy, Understanding the importance of Cu(I) intermediates in self-reducing molecular inks for flexible electronics, Inorg. Chem., 57, 15205-15215 (2018). https://doi.org/10.1021/acs.inorgchem.8b02493
- L. F. de Diego, F. Garcia-Labiano, J. Adanez, P. Gayan, A. Abad, B. M. Corbella, and J. Maria Palacios, Development of Cu-based oxygen carriers for chemical-looping combustion, Fuel, 83, 1749-175 (2004).