Acknowledgement
본 연구는 과학기술정보통신부(MSIT)와 교육부의 재원으로 한국연구재단(NRF)의 지원을 받아 수행된 중견연구지원사업(NRF-2021R1A2C1010194) 및 지자체-대학 협력기반 지역혁신 사업(2023RIS-008)의 결과입니다.
References
- M. K. Assadi, S. Bakhoda, R. Saidur, and H. Hanaei, Recent progress in perovskite solar cells, Renew. Sustain. Energy Rev., 81, 2812-2822 (2018). https://doi.org/10.1016/j.rser.2017.06.088
- D. P. Mcmeekin, G. Sadoughi, W. Rehman, G. E., Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, A mixed-cation lead mixed-halide per-ovskite absorber for tandem solar cells, Science, 351, 151-155 (2016). https://doi.org/10.1126/science.aad5845
- X. Lian, J. Chen, S. Shan, G. Wu, and H. Chen, Polymer modification on the NiOx hole transport layer boosts open-circuit voltage to 1.19 V for perovskite solar cells, ACS Appl. Mater. Interfaces, 12, 46340-46347 (2020). https://doi.org/10.1021/acsami.0c11731
- A. B. Djurisic, F. Z. Liu, H. W. Tam, M. Wong, A. Ng, C. Surya, W. Chen, and Z. B. He, Perovskite solar cells-An overview of critical issues, Prog. Quantum Electron., 53, 1-37 (2017).
- J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency, Energy Environ. Sci., 8, 1602-1608 (2015). https://doi.org/10.1039/C5EE00120J
- M. Saliba, M. Stolterfoht, C. M. Wolff, D. Neher, and A. Abate, Measuring aging stability of perovskite solar cells, Joule, 2, 1019-1024 (2018). https://doi.org/10.1016/j.joule.2018.05.005
- K. Jager, L. Korte, B. Rech, and S. Albrecht, Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures, Opt. Express, 25, A473-A482 (2017). https://doi.org/10.1364/OE.25.00A473
- E. Kohnen, M. Jost, A. B. Morales-Vilches, P. Tockhorn, A. Al-Ashouri, B. Macco, L. Kegelmann, L. Korte, B. Rech, R. Schlatmann, B. Stannowski, and S. Albrecht, Highly efficient monolithic perovskite silicon tandem solar cells: Analyzing the influence of current mismatch on device performance, Sustain. Energy Fuels, 3, 1995-2005 (2019).
- A. Rajagopal, K. Yao, and A. K.-Y. Jen, Toward perovskite solar cell commercialization: A perspective and research roadmap based on interfacial engineering, Adv. Mater., 30, 1800455 (2018).
- S. Zheng, G. Wang, T. Liu, L. Lou, S. Xiao, and S. Yang, Materials and structures for the electron transport layer of efficient and stable perovskite solar cells, Sci. China Chem., 62, 800-809 (2019). https://doi.org/10.1007/s11426-019-9469-1
- J. Chen, X. Lian, Y. Zhang, W. Yang, J. Li, M. Qin, X. Lu, G. Wu, and H. Chen, Interfacial engineering enables high efficiency with a high open-circuit voltage above 1.23 V in 2D perovskite solar cells, J. Mater. Chem. A, 6, 18010-18017 (2018). https://doi.org/10.1039/C8TA06925E
- X. Lian, J. Chen, Y. Zhang, G. Wu, and H. Chen, Inverted perovskite solar cells based on small molecular hole transport material C8-dioctylbenzothienobenzothiophene, Chin. J. Chem., 37, 1239-1244 (2019). https://doi.org/10.1002/cjoc.201900317
- X. Lian, J. Chen, Y. Zhang, S. Tian, M. Qin, J. Li, T. R. Andersen, G. Wu, X. Lu, and H. Chen, Two-dimensional inverted planar perovskite solar cells with efficiency over 15% via solvent and interface engineering, J. Mater. Chem. A, 7, 18980-18986 (2019). https://doi.org/10.1039/C9TA04658E
- C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells, Nat. Commun., 6, 7747 (2015).
- D.-Y. Lee, S.-I. Na, and S.-S. Kim, Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells, Nanoscale, 8, 1513-1522 (2016). https://doi.org/10.1039/C5NR05271H
- Y. Yao, C. Cheng, C. Zhang, H. Hu, K. Wang, and S. De Wolf, Organic hole-transport layers for efficient, stable, and scalable inverted perovskite solar cells, Adv. Mater., 34, 2203794 (2022).
- Y. Cheng, H. W. Li, J. Zhang, Q. D. Yang, T. Liu, Z. Guan, J. Qing, C.-S. Lee, and S. W. Tsang, Spectroscopic study on the impact of methyl- ammonium iodide loading time on the electronic properties in per- ovskite thin films, J. Mater. Chem. A, 4, 561-567 (2016). https://doi.org/10.1039/C5TA08262E
- Y. Cheng, X. Xu, Y. Xie, H. W. Li, J. Qing, C. Ma, C.-S. Lee, F. So, and, S. W. Tsang, 18% high-efficiency air-processed perovskite solar cells made in a humid atmosphere of 70% RH, Sol. RRL, 1, 1700097 (2017).
- X. Xu, C. Ma, Y. Cheng, Y.-M. Xie, X. Yi, B. Gautam, S. Chen, H.-W. Li, C.-S. Lee, F. So, and S.-W. Tsang, Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%, J. Power Sources, 360, 157-165 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.013
- Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene, Nat. Commun., 7, 12806 (2016).
- A. Al-Ashouri, A. Magomedov, M. Ross, M. Jost, M. Talaikis, G. Chistiakova, T. Bertram, J. A. Marquez, E. Kohnen, E. Kasparavicius, S. Levcenco, L. G.-E. S. J. Hages, R. Schlatmann, B. Rech, T. Malinauskas, T. Unold, C. A. Kaufmann, L. Korte, G. Niaura, V. Getautis, and S. Albrecht, Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells, Energy Environ. Sci., 12, 3356-3369 (2019). https://doi.org/10.1039/C9EE02268F
- E. Aktas, N. Phung, H. Kobler, D. A. Gonzalez, M. Mendez, I. Kafedjiska, S.-H. Turren-Cruz, R. Wenisch, I. Lauermann, A. Abate, and E. Palomares, Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p-i-n perovskite solar cells, Energy Environ. Sci., 14, 3976-3985 (2021). https://doi.org/10.1039/D0EE03807E
- X. Yin, Y. Guo, H. Xie, W. Que, and L. B. Kong, Nickel oxide as efficient hole transport materials for perovskite solar cells, Sol. RRL, 3, 1900001 (2019).
- J. You, L. Meng, T. B. Song, T. F. Guo, Y. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. D. Marco, and Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat. Nanotechnol., 11, 75-81 (2016). https://doi.org/10.1038/nnano.2015.230
- Lian, X., Chen, J., Shan, S., Wu, G., and Chen, H., Polymer modification on the NiOx hole transport layer boosts open-circuit voltage to 1.19 V for perovskite solar cells, ACS Appl. Mater. Interfaces, 12, 46340-46347 (2020). https://doi.org/10.1021/acsami.0c11731
- N. Phung, M. Verheijen, A. Todinova, K. Datta, M. Verhage, A. Al-Ashouri, H. Kobler, X. Li, A. Abate, S. Albrecht, M. Creatore, Enhanced self-assembled monolayer surface coverage by ALD NiO in p-i-n perovskite solar cells, ACS Appl. Mater. Interfaces, 14, 2166-2176 (2021). https://doi.org/10.1021/acsami.1c15860
- I. Kafedjiska, I. Levine, A. Musiienko, N. Maticiuc, T. Bertram, A. Al-Ashouri, C. A. Kaufmann, S. Albrecht, R. Schlatmann, and I. Lauermann, Advanced characterization and optimization of NiOx: Cu-SAM hole-transporting Bi-layer for 23.4% efficient monolithic Cu(In,Ga)Se2-perovskite tandem solar cells, Adv. Funct. Mater., 33, 2302924 (2023).
- C.-H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering, Nat. Mater., 13, 796-801 (2014). https://doi.org/10.1038/nmat3984
- D. S. Mann, P. Patil, D.-H. Kim, S.-N. Kwon, and, S. I. Na, Boron nitride-incorporated NiOx as a hole transport material for high-performance p-i-n planar perovskite solar cells, J. Power Sources, 477, 228738 (2020).