References
- L. Cai, T. He, Y. Xiang, and Y. Guan, Study on the reaction pathways of steam methane reforming for H2 production, Energy, 207, 118296 (2020).
- D. Pashchenko, First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming, Energy, 142, 478-487 (2018). https://doi.org/10.1016/j.energy.2017.11.012
- H. Zhang, Z. Sun, and Y. H. Hu, Steam reforming of methane: Current states of catalyst design and process upgrading, Renew. Sust. Energ., 149, 111330 (2021).
- M. A. Khan, R. Daiyan, P. Neal, N. Haque, I. MacGill, and R. Amal, A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilization, Int. J. Hydrog. Energy, 46, 22685-22706 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.104
- P. Inbamrung, T. Sornchamni, C. Prapainainar, S. Tungkamani, P. Narataruksa, and G. N. Jovanovic, Modeling of a square channel monolith reactor for methane steam reforming, Energy, 152, 383-400 (2018). https://doi.org/10.1016/j.energy.2018.03.139
- J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, Hydrogen energy, economy and storage: review and recommendation, Int. J. Hydrog. Energy, 44, 15072-15086 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
- IEA, Energy technology perspectives 2020, IEA, Paris (2020).
- A. Zamaniyan, H. Ebrahimi, and J. S. S. Mohammadzade, A unified model for top fired methane steam reformers using three-dimensional zonal analysis, Chem. Eng. Process., 47, 946-956 (2008). https://doi.org/10.1016/j.cep.2007.03.005
- A. E. Awadallah, D. S. El-Desouki, N. A. K. Aboul-Gheit, A. H. Ibrahim, and A. K. Aboul-Gheit, Effect of crystalline structure and pore geometry of silica based supported materials on the catalytic behavior of metallic nickel particles during methane decomposition to COx-free hydrogen and carbon nanomaterials, Int. J. Hydrog. Energy, 41, 16890-16902 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.081
- R. Khothari, D. Buddhi, and R. L. Sawhney, Comparison of environmental and economic aspects of various hydrogen production methods, Renew. Sust. Energ., 12, 553-563 (2008). https://doi.org/10.1016/j.rser.2006.07.012
- U. P. M. Ashik, W. M. A. W. Daud, and H. F. Abbas, Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane - A review, Renew. Sust. Energ., 44, 221-256 (2015). https://doi.org/10.1016/j.rser.2014.12.025
- Y. Tang, Y. Wei, Z. Wang, S. Zhang, Y. Li, L. Nguyen, Y. Li, Y. Zhou, W. Shen, and F. F. Tao, Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4, J. Am. Chem. Soc., 141, 7283-7293 (2019). https://doi.org/10.1021/jacs.8b10910
- M. Boudjeloud, A. Boulahouache, C. Rabia, and N. Salhi, La-doped supported Ni catalysts for steam reforming of methane, Int. J. Hydrog. Energy, 44, 9906-9913 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.140
- J. Guo, H. Lou, L. Mo, and X. Zheng, The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions, J. Mol. Catal., 316, 1-7 (2010). https://doi.org/10.1016/j.molcata.2009.09.023
- F. M/ Cano, L. F. Lundegaard, R. R. Tiruvalam, H. Falsig, and M. S. Skjoth-Rasmussen, Improving the sintering resistance of Ni/Al2O3 steam-reforming catalysts by promotion with noble metals, Appl. Catal. A-Gen., 498, 117-125 (2015). https://doi.org/10.1016/j.apcata.2015.03.016
- A. D. Shejale and G. D. Yadav, Noble metal promoted Ni-Cu/La2O3-MgO catalyst for renewable and enhanced hydrogen production via steam reforming of bio-based n-butanol: effect of promotion with Pt, Ru and Pd on catalytic activity and selectivity, Clean. Technol. Environ. Policy, 21, 1323-1339 (2019). https://doi.org/10.1007/s10098-019-01708-x
- P. O. Vargas, N. A. F. Gonzalez, R. M. Navarro, J. L. G. Fierro, C. H. Campos, and P. Reyes, Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction, Catal. Today, 259, 27-38 (2016). https://doi.org/10.1016/j.cattod.2015.04.037
- M. Garcia-Dieguez, I. S. Pieta, M. C. Herrera, M. A. Larrubia, and L. J. Alemany, Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane, J. Catal., 270, 136-145 (2010). https://doi.org/10.1016/j.jcat.2009.12.010
- S. C. Baek, K. W. Jun, Y. J. Lee, J. D. Kim, D. Y. Park, and K. Y. Lee, Ru/Ni/MgAl2O4 catalysts for steam reforming of methane: Effects of Ru content on self-activation property, Res. Chem. Intermed., 38, 1225-1236 (2012) https://doi.org/10.1007/s11164-011-0462-0
- B. Steinhauer, M. R. Kasireddy, J. Radnik, and A. Martin, Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming, Appl. Catal. A-Gen., 366, 333-341, (2009) https://doi.org/10.1016/j.apcata.2009.07.021
- I. Pedroarean, L. Grande, J. J. Torrez-Herera, S. A. Korili, and A. Gil, Analysis by temperature-programmed reduction of the catalytic system Ni-Mo-Pd/Al2O3, Fuel, 334, 126789 (2023).
- A. I. Tsiotsias, N. D. Charisiou, C. Italiano, G. D. Ferrante, L. Pino, A. Vita, V. Sebastian, S. J. Hinder, M. A. Baker, A. Sharan, N. Singh, K. Polychronopoulou, and M. A. Goula, Ni-noble metal bimetallic catalysts for improved low temperature CO2 methanation, Appl. Surf. Sci., 646, 158945 (2024).
- J. B. Choi, J. S. Im, S. C. Kang, Y. S. Lee, and C. W. Lee, Effect of metal-support interaction in Ni/SiO2 catalysts on the growth of carbon nanotubes by methane decomposition, Carbon Lett., 33, 477-488 (2023). https://doi.org/10.1007/s42823-022-00438-3
- D. Wu, Y. Zhang, and Y. Li, Mechanical stability of monolithic catalysts: Improving washcoat adhesion by FeCrAl alloy substrate treatment, J. Ind. Eng. Chem., 56, 175-184 (2017).