Acknowledgement
This work was supported by the Industrial Technology Innovation Program funded by the Ministry of Trade, industry & Energy (MOTIE, Korea) [No. 20015778].
References
- T. Riedl, Transparent OLED displays. In: A. Facchetti and Tobin J. Marks (eds.). Transparent Electronics: From Synthesis to Applications, 299-323, John Wiley & Sons, New York, USA (2010).
- G. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J. M. Busch, and S. Brase, A brief history of OLEDs-Emitter development and industry milestones, Adv. Mater., 33, 2005630 (2021).
- Y. Lee, H. Cho, H. Yoon, H. Kang, H. Yoo, H. Zhou, and Y. Yun, Advancements in electronic materials and devices for stretchable displays, Adv. Mater. Technol., 8, 2201067 (2023).
- S. Kwon, H. Kim, S. Choi, E. Jeong, D. Kim, S. Lee, and K. Choi, Weavable and highly efficient organic light-emitting fibers for wearable electronics: A scalable, low-temperature process, Nano Lett., 18, 347-356 (2018). https://doi.org/10.1021/acs.nanolett.7b04204
- K. Behrman, MicroLED and Microdevices for Next-Generation Display Systems, PhD Dissertation, Columbia University, New York, USA (2021).
- J. Kim, P. Gutruf, A. Chiarelli, S. Heo, K. Cho, Z. Xie, and J. Rogers, Miniaturized battery-free wireless systems for wearable pulse oximetry, Adv. Funct. Mater., 27, 1604373 (2017).
- R. Horng, H. Chien, F. Tarntair, and D. Wuu, Fabrication and study on red light micro-LED displays, IEEE J. Electron Devices Soc., 6, 1064-1069 (2018). https://doi.org/10.1109/JEDS.2018.2864543
- J. Koo, D. Kim, H. Shim, T. Kim, and D. Kim, Flexible and stretchable smart display: Materials, fabrication, device design, and system integration, Adv. Funct. Mater., 28, 1801834 (2018).
- G. Crawford, Flexible flat panel display technology. In: G. Crawford (ed.). Flexible Flat Panel Displays, 1-9, John Wiley & Sons, Ltd, New Jersey(Hoboken), US (2005).
- W. Wu, W. Poh, J. Lv, S. Chen, D. Gao, F. Yu, and P. Lee, Self-powered and light-adaptable stretchable electrochromic display, Adv. Energy Mater., 13, 2204103 (2023).
- C. Gu, A. Jia, Y. Zhang, and S. Zhang, Emerging electrochromic materials and devices for future displays, Chem. Rev., 122, 14679-14721 (2022). https://doi.org/10.1021/acs.chemrev.1c01055
- M. Ha, J. Choi, B. Park, and K. Han, Highly flexible cover window using ultra-thin glass for foldable displays, J. Mech. Sci. Technol., 35, 661-668 (2021). https://doi.org/10.1007/s12206-021-0126-y
- D. Kim, S. Kim, G. Lee, J. Yoon, S. Kim, and J. Hong, Fabrication of practical deformable displays: Advances and challenges, Light Sci. Appl., 12, 61 (2023).
- E. Jeong, J. Kwon, K. Kang, S. Jeong, and K. Choi, A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs, J. Inf. Display, 21, 19-32 (2020). https://doi.org/10.1080/15980316.2019.1688694
- K. Han, W. Lee, Y. Kim, J. Kim, B. Choi, and J. Park, Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application, ACS Appl. Electron. Mater., 3, 5037-5047 (2021). https://doi.org/10.1021/acsaelm.1c00806
- J. Kim, D. Kwon, and J. Myoung, Rollable and transparent subpixelated electrochromic displays using deformable nanowire electrodes with improved electrochemical and mechanical stability, Chem. Eng. J., 387, 124145 (2020).
- J. Lee, Z. Gao, D. Fu, and X. Yan, Flexible printed OLED TV display technology: It's TV mobiles, SID Sym. Dig. Tech. Papers, 53, 993-997 (2022). https://doi.org/10.1002/sdtp.15664
- J. Nam, S. Lee, M. Han, and H. Lee, Improved stack structure of rollable display to prevent delamination and permanent deformation, Int. J. Precis. Eng. Manuf., 22, 671-678 (2021). https://doi.org/10.1007/s12541-021-00481-6
- J. Mao, J. Yuan, Z. Guo, P. Tian, J. Zhang, and Q. Zhang, Enhancing bending performance of ultrathin flexible glass through chemical strengthening, Int. J. Appl. Glass Sci, https://doi.org/10.1111/ijag.16659.
- A. Plichta, A. Weber, and A. Habeck, Ultra thin flexible glass substrates, MRS Online Proc. Libr., 769, H9-1 (2003).
- G. Macrelli, A. Varshneya, and J. Mauro, Ultra-thin glass as a substrate for flexible photonics, Opt. Mater., 106, 109994 (2020).
- W. Yang, Z. Zhang, W. Ming, L. Yin, and G. Zhang, Study on shape deviation and crack of ultra-thin glass molding process for curved surface, Ceram. Int. 48, 6767-6779 (2022). https://doi.org/10.1016/j.ceramint.2021.11.228
- N. Shehata, R. Nair, R. Boualayan, I. Kandas, A. Masrani, E. Elnabawy, and A. H. Hassanin, Stretchable nanofibers of polyvinylidenefluoride (PVDF)/thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity, Sci. Rep., 12, 8335 (2022).
- Y. Mukai, S. Li, and M. Suh, 3D-printed thermoplastic polyurethane for wearable breast hyperthermia, Fash. Text., 8, 1-12 (2021). https://doi.org/10.1186/s40691-020-00228-3
- T. Xu, W. Shen, X. Lin, and Y. M. Xie, Mechanical properties of additively manufactured thermoplastic polyurethane (TPU) material affected by various processing parameters, Polymers, 12, 3010 (2020).
- A. Boubakri, N. Guermazi, K. Elleuch, and H. Ayedi, Study of UV-aging of thermoplastic polyurethane material, Mater. Sci. Eng. A, 527, 1649-1654 (2010). https://doi.org/10.1016/j.msea.2010.01.014
- X. Liu, M. Zheng, Q. Chi, Y. Zhang, Z. Dang, G. Chen, and J. Zha, High-temperature energy storage performances of isomer-like polyimide and its thermoplastic polyurethane blending system, J. Mater. Chem. C, 10, 17326-17335 (2022). https://doi.org/10.1039/D2TC03043H
- Y. Shi, A. Hu, Z. Wang, K. Li, and S. Yang, Closed-cell rigid polyimide foams for high-temperature applications: The effect of structure on combined properties, Polymers, 13, 4434 (2021).
- O. Tafreshi, S. Ghaffari-Mosanenzadeh, S. Karamikamkar, Z. Saadatnia, S. Kiddell, C. Park, and H. Naguib, Novel, flexible, and transparent thin film polyimide aerogels with enhanced thermal insulation and high service temperature, J. Mater. Chem. C, 10, 5088-5108 (2022). https://doi.org/10.1039/D1TC06122D
- S. Yan, W. Chen, W. Yan, M. Huang, C. Chen, Z. Xu, and C. Yi, Optical transparency and light colour of highly soluble fluorinated polyimides derived from a novel pyridine-containing diamine m, p-3FPAPP and various aromatic dianhydrides, Des. Monomers Polym., 14, 579-592 (2011).
- K. Watanabe, M. Kaneko, X. Zhong, K. Takada, T. Kaneko, M. Kawai, and T. Mitsumata, Effect of water absorption on electric properties of temperature-resistant polymers, Polymers, 16, 521 (2024).
- Kapton General Specifications: DuPontTM Kapton(R) Polyimide Film[Website]. (2021). https://www.dupont.com/electronics-industrial/kapton-hn.html.
- ASTM D6110-04: Standard test method for determining the Charpy impact resistance of notches specimens of plastics, ASTM International (2004).
- ASTM D256-10: Standard test method for determining the Izod pendulum impact resistance of plastics, ASTM International (2018).
- SAMSUNG Foldable OLED: Folding test under extreme cold conditions[Website]. (2021, Aug 17). https://news.samsungdisplay.com/28705/.