DOI QR코드

DOI QR Code

Evaluation of Comparison of Noise Power Spectrum according to the Time of Using Electronic Portal Imaging Device (EPID) for LINAC System

선형가속기의 시간에 따르는 전자조사문영상기구의 잡음전력스펙트럼 비교 평가

  • Jung-Whan Min (Department of Radiological Science, Shingu University) ;
  • Hoi-Woun Jeong (Department of Radiological Science, Baekseok Culture University)
  • 민정환 (신구대학교 방사선학과) ;
  • 정회원 (백석문화대학교 방사선학과)
  • Received : 2024.02.22
  • Accepted : 2024.03.15
  • Published : 2024.04.30

Abstract

This study was to assessment of quality assurance (QA) and noise characteristics of Noise Power Spectrum (NPS) according to the time of by using electronic portal imaging device (EPID) for LINAC (Linear Accelerator). LINAC device was (Varian ClinacR iX LINAC, USA) used and the were 40 × 30 cm2 of detector size were 1024 × 768 photo-electric diode array size. Signal could be obtained the K-space image of white noise images for NPS and we used to Overlap, Non-Overlap, Out of Penumbra, Flatness, Symmetry, Symmetry Rt, Lt methods. The 2013s NPS image Out of Penumbra quantitatively value more than 2013s NPS image Symmetry Rt, Lt methods quantitatively NPS based on the frequency of 1.0 mm-1. Thus, the 2022s NPS image Out of Penumbra quantitatively value more than 2022s NPS image Symmetry Rt, Lt methods quantitatively NPS based on the frequency of 1.0 mm-1. The assessment of comparison of white noise for NPS image noise and intensity of this study were to that should be used efficiently of the LINAC EPID detector system for Overlap method for International Electro-technical Commission (IEC).

Keywords

References

  1. Son SY, Min JW, Jeong HW, et al. Evaluation of image quality for various electronic portal imaging devices in radiation therapy. Journal of Radiological Science and Technology. 2015;38(4);451-61. Retrieved from https://ocean.kisti.re.kr/IS_mvpopo212L.do?ResultTotalCNT=19&pageNo=2&pageSize=10&method=list&acnCn1=&poid=ksrs1&kojic=BSSGBL&sVnc=v38n4&id=&setId=&iTableId=&iDocId=&sFree=&pQuery=%28kojic%3ABSSGBL%29+AND+%28voliss_ctrl_no%3Av38n4%29 https://doi.org/10.17946/JRST.2015.38.4.16
  2. Miyati T, Fujita H, Kasuga T, et al. Measurements of MTF and SNR(f) using a subtraction method im MRI. Physics in Medicine and Biology. 2002;47: 2961-72. Doi: 10.1088/0031-9155/47/16/311.
  3. Min JW, Jeong HW, Kim KW, et al. Comparison study on CNR and SNR of thoracic spine Lateral radiography. Journal of Radiological Science and Technology. 2013;36(4):280-73. Retrieved from https://ocean.kisti.re.kr/IS_mvpopo212L.do?method=list&poid=ksrs1&kojic=BSS GBL& sVnc=v36n4&sFree=
  4. Lee YJ, Jung HS, Kim YJ, et al. Optimization of non-local means algorithm in low-dose computed tomographic image using noise level and similarity evaluation parameters: A phantom study. Journal of Radiological Science and Technology. 2024;47(1): 39-48. DOI: http://dx.doi.org/10.17946/JRST.2024.47.1.39
  5. Min JW, Jeong HW, Kim KW, et al. Study on the resolution characteristics by using magnetic resonance imaging 3.0T. Journal of Radiological Science and Technology. 2020;43(4):251-7. Retrieved from http://ocean.kisti.re.kr/IS_mvpopo212L.do? method=l ist&poid=ksrs1&kojic=BSSGBL&sVnc=v43n4&sFree= https://doi.org/10.17946/JRST.2020.43.4.251
  6. Min JW, Jeong HW, Kim SC. Evaluation of noise power spectrum characteristics by using magnetic resonance imaging 3.0T. Journal of Radiological Science and Technology. 2021;44(1):279-88. Retrieved from http://ocean.kisti.re.kr/IS_mvpopo212L.do?method=list&poid=ksrs1&kojic=BSSGBL&sVnc=v44n1&sFree=
  7. Min JW, Jeong HW, Han JH, et al. Evaluation of the resolution characteristics by using american college of radiology phantom for magnetic resonance imaging. Journal of Radiological Science and Technology. 2022;45(1):11-7. DOI: http://dx.doi.org/10.17946/JRST.2022.45.1.11
  8. Jeong HW, Min JW, Kim JM, et al. Performance characteristic of a CsI(Tl) flat panel detector radiography system. Journal of Radiological Science and Technology. 2012;35(2):109-17. Retrieved from http://ocean.kisti.re.kr/IS_mvpopo212L.do?method=list&poid=ksrs1&kojic=BSSGBL&sVnc=v35n2&sFree=
  9. Min JW, Jeong HW, Kang HK. Evaluation of the resolution characteristics by using ATS 535H phantom for ultrasound medical imaging. Journal of Radiological Science and Technology. 2023;46(1): 15-21. DOI: http://dx.doi.org/10.17946/JRST.2023.46.1.15
  10. Kim KW, Jeong HW, Min JW, et al. Measurement of image quality according to the time of computed radiography system. Journal of Radiological Science and Technology. 2015;38(4):365-74. Retrieved from http://ocean.kisti.re.kr/IS_mvpopo212L.do?method=list&poid=ksrs1&kojic=BSSGBL&sVnc=v38n4&sFree= https://doi.org/10.17946/JRST.2015.38.4.05
  11. Min JW, Jeong HW, Kim KW, et al. Comparison of noise power spectrum in measurements by using international electrotechnical commission standard devices in indirect digital radiography. Journal of Radiological Science and Technology. 2018;41(5): 457-62. Retrieved from http://ocean.kisti.re.kr/IS_mvpopo212L.do?method=list&poid=ksrs1&kojic=BSSGBL&sVnc=v41n5&sFree= https://doi.org/10.17946/JRST.2018.41.5.457
  12. IEC (International Electrotechnical Commission) 62220-1. Medical electrical equipment characteristics of digital X-ray imaging devices Part 1: determination of the detective quantum efficiency. Geneva; 2003. Retrieved from http://websites.umich.edu/~ners580/ners-bioe_481/lectures/pdfs/2003-10-IEC_62220-DQE.pdf
  13. Samei E, Flynn MJ, Reimann DA, et al. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Medical Physics. 1998;25(1):102-13. Doi: 10.1118/1.598165.
  14. Greer PB, van Doorn T. Evaluation of an algorithm for the assessment of the MTF using an edge method. Medical Physics. 2000;27(9):2048-59. Doi: 10.1118/1.1288682.
  15. Steckner MC, Drost DJ, Prato FS. Computing the modulation transfer function of a magnetic resonance imager. Medical Physics. 1994;21(3):483-9. Doi: 10.1118/1.597310.