Acknowledgement
이 논문은 2024년 정부의 재원으로 수행된 연구 결과임.
References
- I. Hwang and J. Bae, "Two Circle-based Aircraft Head-on Reinforcement Learning Technique using Curriculum," Journal of the Korea Institute of Military Science and Technology, Vol. 26, No. 4, pp. 352-360, 2023. https://doi.org/10.9766/kimst.2023.26.4.352
- S. Yi, K. Kim, and S. Yoon, "Study on Enhancing Training Efficiency of MARL for Swarm Using Transfer Learning," Journal of the Korea Institute of Military Science and Technology, Vol. 26, No. 4, pp. 361-370, 2023. https://doi.org/10.9766/kimst.2023.26.4.361
- M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. GJ Hung, C.-M. Hung, P. HS Torr, J. Foerster, and S. Whiteson, "The StarCraft Multi-Agent Challenge," arXiv preprint arXiv:1902.04043, 2019.
- R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, "Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments," Advances in Neural Information Processing Systems, pp. 6379-6390, 2017.
- K. Kurach, A. Raichuk, P. Stanczyk, M. Zajac, O. Bachem, L. Espeholt, C. Riquelme, D. Vincent, M. Michalski, O. Bousquet, and S. Gelly, "Google Research Football: A Novel Reinforcement Learning Environment," Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 4, pp. 4501-4510, 2020.
- P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel, "Value-Decomposition Networks For Cooperative Multi-Agent Learning," arXiv preprint arXiv:1706.05296, 2017.
- T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson, "Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning," Journal of Machine Learning Research, Vol. 21, No. 178, pp. 1-51, 2020.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, "Playing Atari with Deep Reinforcement Learning," arXiv preprint arXiv:1312.5602, 2013.
- Z. Zhu, K. Lin, A. K. Jain, and J. Zhou, "Transfer Learning in Deep Reinforcement Learning: A Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 45, No. 11, pp. 13344-13362, 2023. https://doi.org/10.1109/TPAMI.2023.3292075
- J. Ho and S. Ermon, "Generative Adversarial Imitation Learning," Advances in Neural Information Processing Systems, pp. 4565-4573, 2016.
- M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothorl, T. Lampe, and M. Riedmiller, "Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards," arXiv preprint arXiv:1707.08817, 2018.
- G. Hinton, O. Vinyals, and J. Dean, "Distilling the Knowledge in a Neural Network," arXiv preprint arXiv:1503.02531, 2015.
- F. Fernandez and M. Veloso, "Probabilistic policy reuse in a reinforcement learning agent," Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 720-727, 2006.
- A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell, "Progressive Neural Networks," arXiv preprint arXiv:1606.04671, 2022.
- C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel, and D. Wierstra, "PathNet: Evolution Channels Gradient Descent in Super Neural Networks," arXiv preprint arXiv:1701.08734, 2017.
- W. Wang, T. Yang, Y. Liu, J. Hao, X. Hao, Y. Hu, Y. Chen, C. Fan, and Y. Gao, "From Few to More: Large-Scale Dynamic Multiagent Curriculum Learning," Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 5, pp. 7293-7300, 2020.
- S. Hu, F. Zhu, X. Chang, and X. Liang, "Updet: Universal Multi-Agent Reinforcement Learning via Policy Decoupling with Transformers," arXiv preprint arXiv:2101.08001, 2021.
- T. Zhou, F. Zhang, K. Shao, Z. Dai, K. Li, W. Huang, W. Wang, B. Wang, D. Li, W. Liu, and others, "Cooperative Multi-Agent Transfer Learning with Coalition Pattern Decomposition," IEEE Transactions on Games, Vol. 16, No. 2, pp. 352-364, 2024. https://doi.org/10.1109/TG.2023.3272386
- W. Zeng, J. Campbell, S. Stepputtis, and K. Sycara, "Multi-Agent Transfer Learning via Temporal Contrastive Learning," arXiv preprint arXiv:2406.01377, 2024.
- Z. Zhu, K. Lin, A. K. Jain, and J. Zhou, "Transfer Learning in Deep Reinforcement Learning: A Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 45, No. 11, pp. 13344-13362, 2023. https://doi.org/10.1109/TPAMI.2023.3292075