Acknowledgement
본 연구는 부산대학교 기본연구지원사업(2년) 연구비로 이루어졌음
References
- N. Mahmood, T. Tang, and Y. Hou, Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective, Adv. Energy Mater., 6, 1600374 (2016).
- A. Nazir, H. T. Le, A. Kasbe, and C.-J. Park, Si nanoparticles confined within a conductive 2D porous Cu-based metal-organic framework (Cu3(HITP)2) as potential anodes for high-capacity Li-ion batteries, Chem. Eng. J., 405, 126963 (2021).
- W.-R. Liu, Z.-Z. Guo, W.-S. Young, D.-T. Shieh, H.-C. Wu, M.-H. Yang, and N.-L. Wu, Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive, J. Power Sources, 140, 139-144 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.032
- P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao, W. Sun, and S. X. Dou, Recent progress on silicon-based anode materials for practical lithium-ion battery applications, Energy Storage Mater., 15, 422-446 (2018). https://doi.org/10.1016/j.ensm.2018.07.014
- Y. Yang, W. Yuan, W. Kang, Y. Ye, Q. Pan, X. Zhang, Y. Ke, C. Wang, Z. Qiu, and Y. Tang, A review on silicon nanowire-based anodes for next-generation high-performance lithiumion batteries from a material-based perspective, Sustain. Energy Fuels, 4, 1577-1594 (2020).
- B. Hertzberg, A. Alexeev, and G. Yushin, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space, J. Am. Chem. Soc., 132, 8548-8549 (2010). https://doi.org/10.1021/ja1031997
- L. Shi, C. Pang, S. Chen, M. Wang, K. Wang, Z. Tan, P. Gao, J. Ren, Y. Huang, H. Peng, and Z. Liu, Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes, Nano Lett., 17, 3681-3687 (2017).
- X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano, 6, 1522-1531 (2012). https://doi.org/10.1021/nn204476h
- Y. Yan, Z. Xu, C. Liu, H. Dou, J. Wei, X. Zhao, J. Ma, Q. Dong, H. Xu, Y. He, Z.-F. Ma, and X. Yang, Rational design of the robust janus shell on silicon anodes for high-performance lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 11, 17375-17383 (2019). https://doi.org/10.1021/acsami.9b01909
- L.-F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui, Crystallineamorphous core-shell silicon nanowires for high capacity and high current battery electrodes, Nano Lett., 9, 491-495 (2009). https://doi.org/10.1021/nl8036323
- L. Hu, M. Jin, Z. Zhang, H. Chen, F. Boorboor Ajdari, and J. Song, Interface-adaptive binder enabled by supramolecular interactions for high-capacity Si/C composite anodes in lithium-ion batteries, Adv. Funct. Mater., 32, 2111560 (2022).
- J. H. Hwang, E. Kim, E. Y. Lim, W. Lee, J.-O. Kim, I. Choi, Y. S. Kim, D.-G. Kim, J. H. Lee, and J.-C. Lee, A multifunctional interlocked binder with synergistic in situ covalent and hydrogen bonding for high-performance Si anode in li-ion batteries, Adv. Sci., 10, 2302144 (2023).
- Z. H. Xie, M. Z. Rong, and M. Q. Zhang, Dynamically cross-linked polymeric binder-made durable silicon anode of a wide operating temperature Li-Ion battery, ACS Appl. Mater. Interfaces, 13, 28737-28748 (2021). https://doi.org/10.1021/acsami.1c01472
- J.-T. Li, Z.-Y. Wu, Y.-Q. Lu, Y. Zhou, Q.-S. Huang, L. Huang, and S.-G. Sun, Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density, Adv. Energy Mater., 7, 1701185 (2017).
- M. T. Jeena, J.-I. Lee, S. H. Kim, C. Kim, J.-Y. Kim, S. Park, and J.-H. Ryu, Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries, ACS Appl. Mater. Interfaces, 6, 18001-18007 (2014). https://doi.org/10.1021/am504854x
- B. Lestriez, S. Bahri, I. Sandu, L. Roue, and D. Guyomard, On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries, Electrochem. Commun., 9, 2801-2806 (2007). https://doi.org/10.1016/j.elecom.2007.10.001
- C. Gao, H. Zhang, P. Mu, R. Wu, X. Zhang, X. Chen, C. Sun, Q. Wang, and G. Cui, Hard-soft segment synergism binder facilitates the implementation of practical SiC600 electrodes, Adv. Energy Mater., 13, 2302411 (2023).
- J.-O. Kim, E. Kim, E. Y. Lim, T. Kwon, I.-J. Kim, J. Lee, J.-W. Ko, and J. H. Lee, Stress-dissipative elastic waterborne polyurethane binders for silicon anodes with high structural integrity in lithium-ion batteries, ACS Appl. Energy Mater., 7, 1629-1639 (2024). https://doi.org/10.1021/acsaem.3c03099
- M.-G. Kim, K.-I. Jo, E. Kim, J.-H. Park, J.-W. Ko, and J. H. Lee, Preparation of polydimethylsiloxane-modified waterborne polyurethane coatings for marine applications, Polymers, 13, 4283 (2021).
- Y. Xiao, X. Fu, Y. Zhang, Z. Liu, L. Jiang, and J. Lei, Preparation of waterborne polyurethanes based on the organic solvent-free process, Green Chem., 18, 412-416 (2016). https://doi.org/10.1039/C5GC01197C
- J. Lou, Z. Liu, L. Yang, Y. Guo, D. Lei, and Z. You, A new strategy of discretionarily reconfigurable actuators based on self-healing elastomers for diverse soft robots, Adv. Funct. Mater., 31, 2008328 (2021).
- X. Li, N. Mignard, M. Taha, F. Prochazka, J. Chen, S. Zhang, and F. Becquart, Thermoreversible supramolecular networks from poly(trimethylene carbonate) synthesized by condensation with triuret and tetrauret, Macromolecules, 52, 6585-6599 (2019). https://doi.org/10.1021/acs.macromol.9b00585
- K. M. Saller, G. Hubner, and C. Schwarzinger, Introducing free carboxylic acid groups along polyester chains using dimethylolpropionic acid as diol component, Eur. Polym. J., 198, 112442 (2023).
- J. Datta, P. Kasprzyk, K. Blazek, and M. Wloch, Synthesis, structure and properties of poly(ester-urethane)s obtained using bio-based and petrochemical 1,3-propanediol and 1,4-butanediol, J. Therm. Anal. Calorim., 130, 261-276 (2017). https://doi.org/10.1007/s10973-017-6558-z
- F. Zou, P. Yue, X. Zheng, D. Tang, W. Fu, and Z. Li, Robust and superhydrophobic thiourethane bridged polysilsesquioxane aerogels as potential thermal insulation materials, J. Mater. Chem. A, 4, 10801-10805(2016). https://doi.org/10.1039/C6TA03531K
- T. Zhang, B. Li, Z. Song, W. Jiang, S. Liu, R. Mao, Z. Jian, and F. Hu, Ten-minute synthesis of a new redox-active aqueous binder for flame-retardant Li-S batteries, Energy Environ. Mater., 7, e12572 (2024).
- J. Nam, E. Kim, R. K. K, Y. Kim, and T.-H. Kim, A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries, Sci. Rep., 10, 14966 (2020).
- Y. J. Kwon, J.-O. Kim, E. Vivek, E. Kim, S. H. Kim, T. Kwon, E. Lim, S. Chae, M. Park, Y. Eom, J.-H. Baik, J. H. Lee, and K. Y. Cho, A stress-adaptive interlinked 3D network binder for silicon anodes via tailored chemical bonds and conformation of functionalized poly(vinylidene fluoride) (PVDF) terpolymers, Chem. Eng. J., 479, 147860 (2024).
- J. Sourice, A. Quinsac, Y. Leconte, O. Sublemontier, W. Porcher, C. Haon, A. Bordes, E. D. Vito, A. Boulineau, S. J. S. Larbi, N. Herlin-Boime, and C. Reynaud, One-step synthesis of Si@C nanoparticles by laser pyrolysis: High-capacity anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces, 7, 6637-6644 (2015). https://doi.org/10.1021/am5089742
- M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang, H. Qiu, Z. Chen, and G. Cui, An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes, Nano-Micro Lett., 14, 87 (2022).
- W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries, J. Electrochem. Sci. Technol., 11, 1-13 (2020). https://doi.org/10.33961/jecst.2019.00528
- S.-B. Kim, H. Kim, D.-H. Park, J.-H. Kim, J.-H. Shin, J.-S. Jang, S.-H. Moon, J.-H. Choi, and K.-W. Park, Li-ion diffusivity and electrochemical performance of Ni-rich cathode material doped with fluoride ions, J. Power Sources, 506, 230219 (2021).
- Y. Li, B. Jin, K. Wang, L. Song, L. Ren, Y. Hou, X. Gao, X. Zhan, and Q. Zhang, Coordinatively-intertwined dual anionic polysaccharides as binder with 3D network conducive for stable SEI formation in advanced silicon-based anodes, Chem. Eng. J., 429, 132235 (2022).
- L. Zhang, X. Jiao, Z. Feng, B. Li, Y. Feng, and J. Song, A nature-inspired binder with three-dimensional cross-linked networks for silicon-based anodes in lithium-ion batteries, J. Power Sources, 484, 229198 (2021).