Acknowledgement
This study was supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology)
References
- B. K. Ghosh, S. Hazra, B. Naik, and N. N. Ghosh, Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes, Powder Technol., 269, 371-378 (2015). https://doi.org/10.1016/j.powtec.2014.09.027
- H. Lu, H. Yin, Y. Liu, T. Jiang, and L. Yu, Influence of support on catalytic activity of Ni catalysts in p-nitrophenol hydrogenation to p-aminophenol, Catal. Commun., 10, 313-316 (2008). https://doi.org/10.1016/j.catcom.2008.09.015
- G. Eichenbaum, M. Johnson, D. Kirkland, P. O'Neill, S. Stellar, J. Bielawne, R. DeWire, D. Areia, S. Bryant, S. Weiner, D. Desai-Krieger, P. Guzzie-Peck, D. C. Evans, and A. Tonelli, Assessment of the genotoxic and carcinogenic risks of pnitrophenol when it is present as an impurity in a drug product, Regul. Toxicol. Pharmacol., 55, 33-42 (2009). https://doi.org/10.1016/j.yrtph.2009.05.018
- P. T. Huong, B. K. Lee, J. Kim, and C. H. Lee, Nitrophenols removal from aqueous medium using Fe-nano mesoporous zeolite, Mater. Des., 101, 210-217 (2016). https://doi.org/10.1016/j.matdes.2016.04.020
- B. Cui, J. C. Gong, M. H. Duan, Z. X. Chang, L. L. Su, W. J. Liu, and D. L. Li, Reactive extraction of p-nitrophenol using tributylphosphate in solvent naphtha or n-octanol, J. Chem. Eng. Data, 61, 813-819 (2016). https://doi.org/10.1021/acs.jced.5b00636
- S. Chaouchi and O. Hamdaoui, Removal of 4-nitrophenol from water by emulsion liquid membrane, Desalin. Water Treat., 57, 5253-5257 (2016). https://doi.org/10.1080/19443994.2015.1021104
- C. Nie, N. Shao, B. Wang, D. Yuan, X. Sui, and H. Wu, Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater, Chemosphere, 154, 604-612 (2016). https://doi.org/10.1016/j.chemosphere.2016.04.020
- G. Fadillah, T. A. Saleh, and S. Wahyuningsih, Enhanced electrochemical degradation of 4-nitrophenol molecules using novel Ti/Ti O2-NiO electrodes, J. Mol. Liq., 289, 111108 (2019).
- P. Zhao, X. Feng, D. Huang, G. Yang, and D. Astruc, Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles, Coord. Chem. Rev., 287, 114- 136 (2015). https://doi.org/10.1016/j.ccr.2015.01.002
- M. Zhang, X. Su, L. Ma, A. Khan, L. Wang, J. Wang, A. S. Maloletnev, and C. Yang, Promotion effects of halloysite nanotubes on catalytic activity of Co3O4 nanoparticles toward reduction of 4-nitrophenol and organic dyes, J. Hazard. Mater., 403, 123870 (2021).
- J. Li, F. Wu, L. Lin, Y. Guo, H. Liu, and X. Zhang, Flow fabrication of a highly efficient Pd/UiO-66-NH2 film capillary microreactor for 4-nitrophenol reduction, Chem. Eng. J., 333, 146-152 (2018). https://doi.org/10.1016/j.cej.2017.09.154
- C. Gao, L. Xiao, J. Zhou, H. Wang, S. Zhai, and Q. An, Immobilization of nanosilver onto glycine modified lignin hydrogel composites for highly efficient p-nitrophenol hydrogenation, Chem. Eng. J., 403, 126370 (2021).
- C. S. Diercks and O. M. Yaghi, The atom, the molecule, and the covalent organic framework, Science, 355, eaal1585 (2017).
- S. Y. Ding and W. Wang, Covalent organic frameworks (COFs): from design to applications, Chem. Soc. Rev., 42, 548-568 (2013). https://doi.org/10.1039/C2CS35072F
- S. Das, P. Heasman, T. Ben, and S. Qiu, Porous organic materials: Strategic design and structure-function correlation, Chem. Rev., 117, 1515-1563 (2017). https://doi.org/10.1021/acs.chemrev.6b00439
- M. X. Wu and Y. W. Yang, Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery, Chin. Chem. Lett., 28, 1135-1143 (2017). https://doi.org/10.1016/j.cclet.2017.03.026
- J. Tang, C. Su, and Z. Shao, Covalent organic framework (COF)- based hybrids for electrocatalysis: Recent advances and perspectives, Small Methods, 5, 2100945 (2021).
- H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, D. Huang, Y. Zhu, Z. Wang, and J. Tang, Covalent organic framework photocatalysts: Structures and applications, Chem. Soc. Rev., 49, 4135-4165 (2020). https://doi.org/10.1039/D0CS00278J
- S. Bhunia, K. A. Deo, and A. K. Gaharwar, 2D Covalent organic frameworks for biomedical applications, Adv. Funct. Mater., 30, 2002046 (2020).
- J. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, and B. Wang, Bulk COFs and COF nanosheets for electrochemical energy storage and conversion, Chem. Soc. Rev., 49, 3565-3604 (2020). https://doi.org/10.1039/D0CS00017E
- S. Bisgaard, Industrial use of statistically designed experiments: Case study references and some historical anecdotes, Quality Eng., 4, 547-562 (1992). https://doi.org/10.1080/08982119208918936
- M. A. Sedghamiz, S. Raeissi, F. Attar, M. Salimi, and K. Mehrabi, In-situ transesterification of residual vegetable oil in spent bleaching clay with alkali catalysts using CCD-RSM design of experiment, Fuel, 237, 515-521 (2019). https://doi.org/10.1016/j.fuel.2018.09.116
- Y. Seki, S. Seyhan, and M. Yurdakoc, Removal of boron from aqueous solution by adsorption on Al2O3 based materials using full factorial design, J. Hazard. Mater., 138, 60-66 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.033
- L. Ilzarbe, M. J. Alvarez, E. Viles, and M. Tanco, Practical applications of design of experiments in the field of engineering: A bibliographical review, Qual. Reliab. Eng. Int., 24, 417-428 (2008). https://doi.org/10.1002/qre.909