Acknowledgement
본 연구는 한국과학재단이 주관하는 중견연구자지원사업(2022R1A2C2010081)의 지원을 받아 수행되었습니다.
References
- Cha, S.H., Kim, H.S., Cho, S. (2022) Parametric Studies on Hydrogen Embrittlement in Liquified Hydrogen Tank using Molecular Dynamics Simulation, J. Comput. Struct. Eng. Inst. Korea, 35(6), pp.325~331. https://doi.org/10.7734/COSEIK.2022.35.6.325
- Di Leo, C.V., Anand, L. (2013) Hydrogen in Metals: a Coupled Theory for Species Diffusion and Large Lastic-Plastic Deformations, Int. J. Plast., 43, pp.42~69. https://doi.org/10.1016/j.ijplas.2012.11.005
- Dugdale, D.S. (1960) Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, 8(2), pp.100~104. https://doi.org/10.1016/0022-5096(60)90013-2
- Dwivedi, S.K., Vishwakarma, M. (2018) Hydrogen Embrittlement in Different Materials: A Review, Int. J. Hydrog. Energy., 43(46), pp.21603~21616. https://doi.org/10.1016/j.ijhydene.2018.09.201
- Gobbi, G., Colombo, C., Miccoli, S., Vergani, L. (2019) A fully coupled implementation of hydrogen embrittlement in FE analysis, Adv. Eng. Softw., 135, p.102673.
- Gurson, A.L. (1977) Continuum Theory of Ductile Rupture by Void Nucleation and Growth, J. Eng. Mater. Technol., 99, pp.2~15. https://doi.org/10.1115/1.3443401
- Huang, S., Hui, H., Peng, J. (2023) Prediction of Hydrogen-Assisted Fracture under Coexistence of Hydrogen-Enhanced Plasticity and Decohesion, Int. J. Hydrog. Energy, 48(94), pp.36987~37000. https://doi.org/10.1016/j.ijhydene.2023.06.033
- Li, X., Ma, X., Zhang, J., Akiyama, E., Wang, Y., Song, X. (2020) Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention, Acta Metall. Sin. (Engl. Lett.), 33, pp.759~773. https://doi.org/10.1007/s40195-020-01039-7
- Lin, M., Yu, H., Wang, X., Wang, R., Ding, Y., Alvaro, A., Olden, V., Zhang, Z. (2022) A Microstructure Informed and Mixed-Mode Cohesive Zone Approach to Simulating Hydrogen Embrittlement, Int. J. Hydrog. Energy, 47(39), pp.17479~17493. https://doi.org/10.1016/j.ijhydene.2022.03.226
- Oriani, R.A., Josephic, P.H. (1974) Equilibrium Aspects of Hydrogen-induced Cracking of Steels, Acta Metall., 22(9), pp. 1065~1074. https://doi.org/10.1016/0001-6160(74)90061-3
- Park, J., Huh, N.S., Park, K. (2024a) Numerical Modeling of Hydrogen Embrittlement Fracture with Hydrogen Diffusion Model and Gurson-Cohesive Model. (in preparation)
- Park, J., Kweon, S., Park, K. (2024b) Computational Implementation of Gurson-Cohesive Modeling and Its Applications. (in preparation)
- Park, J., Kweon, S., Park, K. (2024c) Gurson-Cohesive Modeling (GCM) for 3D Ductile Fracture Simulation, Int. J. Plast., p.103914.
- Park, K., Paulino, G.H. (2012) Computational Implementation of the PPR Potential-based Cohesive Model in ABAQUS: Educational Perspective, Eng. Fract. Mech., 93, pp.239~262. https://doi.org/10.1016/j.engfracmech.2012.02.007
- Park, K., Paulino, G.H., Roesler, J.R. (2009) A Unified Potential-based Cohesive Model of Mixed-Mode Fracture, J. Mech. Phys. Solids, 57, pp.891~908. https://doi.org/10.1016/j.jmps.2008.10.003
- Serebrinsky, S., Carter, E.A., Ortiz, M. (2004) A Quantum-Mechanically Informed Continuum Model of Hydrogen Embrittlement, J. Mech. Phys. Solids, 52(10), pp.2403~2430. https://doi.org/10.1016/j.jmps.2004.02.010
- Sofronis, P., Liang, Y., Aravas, N. (2001) Hydrogen Induced Shear Localization of the Plastic Flow in Metals and Alloys, Eur. J. Mech. A Solids, 20(6), pp857~872. https://doi.org/10.1016/S0997-7538(01)01179-2
- Sofronis, P., McMeeking, R.M. (1989) Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip, J. Mech. Phys. Solids, 37(3), pp.317~350. https://doi.org/10.1016/0022-5096(89)90002-1
- Tiwari, G.P., Bose, A., Chakravartty, J.K., Wadekar, S.L., Totlani, M.K., Arya, R.N., Fotedar, R.K. (2000) A Study of Internal Hydrogen Embrittlement of Steels, Mater. Sci. Eng. A., 286(2), pp.269~281. https://doi.org/10.1016/S0921-5093(00)00793-0