DOI QR코드

DOI QR Code

Numerical Modeling of Hydrogen Embrittlement-induced Ductile Fracture Using a Gurson-Cohesive Model (GCM) and Hydrogen Diffusion

Gurson-Cohesive Model(GCM)과 수소 확산 모델을 결합한 수소 취화 파괴 해석 기법

  • Jihyuk Park (Department of Civil & Environmental Engineering, Yonsei University) ;
  • Nam-Su Huh (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Kyoungsoo Park (Department of Civil & Environmental Engineering, Yonsei University)
  • 박지혁 (연세대학교 건설환경공학과) ;
  • 허남수 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 박경수 (연세대학교 건설환경공학과)
  • Received : 2024.06.14
  • Accepted : 2024.07.15
  • Published : 2024.08.31

Abstract

Hydrogen embrittlement fracture poses a challenge in ensuring the structural integrity of materials exposed to hydrogen-rich environments. This study advances our comprehension of hydrogen-induced fracture through an integrated numerical modeling approach. In addition, it employs a ductile fracture model named the Gurson-cohesive model (GCM) and hydrogen diffusion analysis. GCM is employed as a fracture model that combines the Gurson model to illustrate the continuum damage evolution and the cohesive zone model to describe crack surface discontinuity and softening behavior. Moreover, porosity and stress triaxiality are considered as crack initiation criteria . A hydrogen diffusion analysis is also integrated with the GCM to account for hydrogen enhanced decohesion (HEDE) mechanisms and their subsequent impacts on crack initiation and propagation. This framework considers the influence of hydrogen on the softening behavior of the traction-separation relationship on the discontinuous crack surface. Parametric studies explore the sensitivity to diffusion properties and hydrogen-induced fracture properties. By combining numerical models of hydrogen diffusion and the ductile fracture model, this study provides an understanding of hydrogen-induced fracture and thereby contributes significantly to the ongoing efforts to design materials that are resilient to hydrogen embrittlement in practical engineering applications.

수소 취성 파괴는 수소가 풍부한 환경에 노출된 재료의 구조적 무결성을 보장하는 데 있어 다양한 산업 응용 분야에서 큰 도전 과제이다. 본 연구는 연성 파괴 모델인 Gurson-Cohesive 모델과 수소 확산 모델을 통합하는 수치 모델을 제안하고 수소 취화가 파괴 거동에 끼치는 영향을 조사한다. 사용된 연성 파괴 모델은 손상 진화를 모사하는 Gurson 모델과 균열 표면의 불연속성과 응력-균열폭 관계의 연화 거동을 설명하는 표면 요소 기반의 Cohesive zone 모델을 결합한 파괴 모델이며, 균열 시작 기준으로 공극과 삼축성을 고려한다. 또한, 파괴 모델과 통합된 수소 확산 분석은 수소 강화 탈결합(HEDE) 메커니즘과 그에 따른 균열 시작 및 진전에 미치는 영향을 고려하며, 응력-균열폭 관계에 대한 수소의 영향을 고려한다. 수치 예제로 매개변수 연구를 통하여 확산 계수와 수소 취화 파과 특성에 대한 민감도를 조사한다. 수소 확산 모델과 연성 파괴 모델을 통합한 프레임워크를 제시함으로써 본 연구는 수소 취화 파괴에 대한 이해를 제공하여 엔지니어링 응용 분야에서 기여할 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 한국과학재단이 주관하는 중견연구자지원사업(2022R1A2C2010081)의 지원을 받아 수행되었습니다.

References

  1. Cha, S.H., Kim, H.S., Cho, S. (2022) Parametric Studies on Hydrogen Embrittlement in Liquified Hydrogen Tank using Molecular Dynamics Simulation, J. Comput. Struct. Eng. Inst. Korea, 35(6), pp.325~331. https://doi.org/10.7734/COSEIK.2022.35.6.325
  2. Di Leo, C.V., Anand, L. (2013) Hydrogen in Metals: a Coupled Theory for Species Diffusion and Large Lastic-Plastic Deformations, Int. J. Plast., 43, pp.42~69. https://doi.org/10.1016/j.ijplas.2012.11.005
  3. Dugdale, D.S. (1960) Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, 8(2), pp.100~104. https://doi.org/10.1016/0022-5096(60)90013-2
  4. Dwivedi, S.K., Vishwakarma, M. (2018) Hydrogen Embrittlement in Different Materials: A Review, Int. J. Hydrog. Energy., 43(46), pp.21603~21616. https://doi.org/10.1016/j.ijhydene.2018.09.201
  5. Gobbi, G., Colombo, C., Miccoli, S., Vergani, L. (2019) A fully coupled implementation of hydrogen embrittlement in FE analysis, Adv. Eng. Softw., 135, p.102673.
  6. Gurson, A.L. (1977) Continuum Theory of Ductile Rupture by Void Nucleation and Growth, J. Eng. Mater. Technol., 99, pp.2~15. https://doi.org/10.1115/1.3443401
  7. Huang, S., Hui, H., Peng, J. (2023) Prediction of Hydrogen-Assisted Fracture under Coexistence of Hydrogen-Enhanced Plasticity and Decohesion, Int. J. Hydrog. Energy, 48(94), pp.36987~37000. https://doi.org/10.1016/j.ijhydene.2023.06.033
  8. Li, X., Ma, X., Zhang, J., Akiyama, E., Wang, Y., Song, X. (2020) Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention, Acta Metall. Sin. (Engl. Lett.), 33, pp.759~773. https://doi.org/10.1007/s40195-020-01039-7
  9. Lin, M., Yu, H., Wang, X., Wang, R., Ding, Y., Alvaro, A., Olden, V., Zhang, Z. (2022) A Microstructure Informed and Mixed-Mode Cohesive Zone Approach to Simulating Hydrogen Embrittlement, Int. J. Hydrog. Energy, 47(39), pp.17479~17493. https://doi.org/10.1016/j.ijhydene.2022.03.226
  10. Oriani, R.A., Josephic, P.H. (1974) Equilibrium Aspects of Hydrogen-induced Cracking of Steels, Acta Metall., 22(9), pp. 1065~1074. https://doi.org/10.1016/0001-6160(74)90061-3
  11. Park, J., Huh, N.S., Park, K. (2024a) Numerical Modeling of Hydrogen Embrittlement Fracture with Hydrogen Diffusion Model and Gurson-Cohesive Model. (in preparation)
  12. Park, J., Kweon, S., Park, K. (2024b) Computational Implementation of Gurson-Cohesive Modeling and Its Applications. (in preparation)
  13. Park, J., Kweon, S., Park, K. (2024c) Gurson-Cohesive Modeling (GCM) for 3D Ductile Fracture Simulation, Int. J. Plast., p.103914.
  14. Park, K., Paulino, G.H. (2012) Computational Implementation of the PPR Potential-based Cohesive Model in ABAQUS: Educational Perspective, Eng. Fract. Mech., 93, pp.239~262. https://doi.org/10.1016/j.engfracmech.2012.02.007
  15. Park, K., Paulino, G.H., Roesler, J.R. (2009) A Unified Potential-based Cohesive Model of Mixed-Mode Fracture, J. Mech. Phys. Solids, 57, pp.891~908. https://doi.org/10.1016/j.jmps.2008.10.003
  16. Serebrinsky, S., Carter, E.A., Ortiz, M. (2004) A Quantum-Mechanically Informed Continuum Model of Hydrogen Embrittlement, J. Mech. Phys. Solids, 52(10), pp.2403~2430. https://doi.org/10.1016/j.jmps.2004.02.010
  17. Sofronis, P., Liang, Y., Aravas, N. (2001) Hydrogen Induced Shear Localization of the Plastic Flow in Metals and Alloys, Eur. J. Mech. A Solids, 20(6), pp857~872. https://doi.org/10.1016/S0997-7538(01)01179-2
  18. Sofronis, P., McMeeking, R.M. (1989) Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip, J. Mech. Phys. Solids, 37(3), pp.317~350. https://doi.org/10.1016/0022-5096(89)90002-1
  19. Tiwari, G.P., Bose, A., Chakravartty, J.K., Wadekar, S.L., Totlani, M.K., Arya, R.N., Fotedar, R.K. (2000) A Study of Internal Hydrogen Embrittlement of Steels, Mater. Sci. Eng. A., 286(2), pp.269~281. https://doi.org/10.1016/S0921-5093(00)00793-0