Acknowledgement
본 논문은 2024년도 전북 농기계·부품 기술고도화를 위한 인프라 활용 기술개발 지원사업의 지원을 받아 수행된 연구임(No. IZ-24- 0039)
References
- H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman, A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, and D. A. Dixon, Catalysis research of relevance to carbon management: Progress, challenges, and opportunities, Chem. Rev., 101, 953-996 (2001). https://doi.org/10.1021/cr000018s
- N. S. Lewis and D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A., 103, 15729-15735 (2006). https://doi.org/10.1073/pnas.0603395103
- I. Dincer and C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy, 40, 11094-11111 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.035
- J. Rogelj, O. Geden, A. Cowie, and A. Reisinger, Three ways to improve net-zero emissions targets, Nature, 591, 365-368 (2021). https://doi.org/10.1038/d41586-021-00662-3
- H. Ishaq, I. Dincer, and C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities, Int. J. Hydrogen Energy, 47, 26238-26264 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.149
- W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, and E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo-and electro-chemical CO2 reduction, Chem. Rev., 115, 12936-12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197
- C. Gobel, S. Schmidt, C. Froese, Q. Fu, Y.-T. Chen, Q. Pan, and M. Muhler, Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure, J. Catal., 383, 33-41 (2020). https://doi.org/10.1016/j.jcat.2020.01.004
- A. Goryachev, A. Pustovarenko, G. Shterk, N. S. Alhajri, A. Jamal, M. Albuali, L. van Koppen, I. S. Khan, A. Russkikh, and A. Ramirez, A multi-parametric catalyst screening for CO2 hydrogenation to ethanol, ChemCatChem, 13, 3324-3332 (2021). https://doi.org/10.1002/cctc.202100302
- Z. Ma, and M. D. Porosoff, Development of tandem catalysts for CO2 hydrogenation to olefins, ACS Catal., 9, 2639-2656 (2019). https://doi.org/10.1021/acscatal.8b05060
- C. S. Budi, H. C. Wu, C. S. Chen, D. Saikia, and H. M. Kao, Ni nanoparticles supported on cage-type mesoporous silica for CO2 hydrogenation with high CH4 selectivity, ChemSusChem, 9, 2326-2331
- H. Chen, P. Liu, J. Liu, X. Feng, and S. Zhou, Mechanochemical in-situ incorporation of Ni on MgO/MgH2 surface for the selective O-/C-terminal catalytic hydrogenation of CO2 to CH4, J. Catal., 394, 397-405 (2021). https://doi.org/10.1016/j.jcat.2020.10.026
- J. Liu, G. Zhang, X. Jiang, J. Wang, C. Song, and X. Guo, Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons, Catal. Today, 371, 162-170 (2021). https://doi.org/10.1016/j.cattod.2020.07.032
- S. Saeidi, N. A. S. Amin, and M. R. Rahimpour, Hydrogenation of CO2 to value-added products-A review and potential future developments, J. CO2 Util., 5, 66-81 (2014). https://doi.org/10.1016/j.jcou.2013.12.005
- A. M. Abdel-Mageed, K. Wiese, M. Parlinska-Wojtan, J. Rabeah, A. Bruckner, and R. J. Behm, Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts, Appl. Catal. B, 270, 118846 (2020).
- A. Karelovic and P. Ruiz, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, J. Catal., 301, 141-153 (2013). https://doi.org/10.1016/j.jcat.2013.02.009
- X. Wang, Y. Hong, H. Shi, and J. Szanyi, Kinetic modeling and transient DRIFTSMS studies of CO2 methanation over Ru/Al2O3 catalysts, J. Catal., 343, 185-195
- J. Ashok, S. Pati, P. Hongmanorom, Z. Tianxi, C. Junmei, and S. Kawi, A review of recent catalyst advances in CO2 methanation processes, Catal. Today, 356, 471-489 (2020). https://doi.org/10.1016/j.cattod.2020.07.023
- A. Nemmour, A. Inayat, I. Janajreh, and C. Ghenai, Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review, Int. J. Hydrogen Energy, 48, 29011-29033 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.240
- M. Halabi, M. De Croon, J. Van der Schaaf, P. Cobden, and J. Schouten, Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer, Chem. Eng. J., 137, 568-578 (2008). https://doi.org/10.1016/j.cej.2007.05.019
- P. Schwach, X. Pan, and X. Bao, Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects, Chem. Rev., 117, 8497-8520 (2017). https://doi.org/10.1021/acs.chemrev.6b00715
- J. H. Park, J. Yang, D. Kim, H. Gim, W. Y. Choi, and J. W. Lee, Review of recent technologies for transforming carbon dioxide to carbon materials, Chem. Eng. J., 427, 130980 (2022).
- P. Gong, C. Tang, B. Wang, T. Xiao, H. Zhu, Q. Li, and Z. Sun, Precise CO2 reduction for bilayer graphene, ACS Cent. Sci., 8, 394-401 (2022). https://doi.org/10.1021/acscentsci.1c01578
- S. Zhu, S. Liang, Y. Tong, X. An, J. Long, X. Fu, and X. Wang, Photocatalytic reduction of CO2 with H2O to CH4 on Cu (I) supported TiO2 nanosheets with defective {001} facets, Phys. Chem. Chem. Phys., 17, 9761-9770 (2015). https://doi.org/10.1039/C5CP00647C
- Z. He, J. Tang, J. Shen, J. Chen, and S. Song, Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid, Appl. Surf. Sci., 364, 416-427
- F. Geppert, D. Liu, M. van Eerten-Jansen, E. Weidner, C. Buisman, and A. Ter Heijne, Bioelectrochemical power-to-gas: state of the art and future perspectives, Trends Biotechnol., 34, 879-894
- Z. Zhao, X. Peng, X. Liu, X. Sun, J. Shi, L. Han, G. Li, and J. Luo, Efficient and stable electroreduction of CO2 to CH4 on CuS nanosheet arrays, J. Mater. Chem. A, 5, 20239-20243 (2017). https://doi.org/10.1039/C7TA05507B
- N. Aryal, T. Kvist, F. Ammam, D. Pant, and L. D. Ottosen, An overview of microbial biogas enrichment, Bioresour. Technol., 264, 359-369 (2018). https://doi.org/10.1016/j.biortech.2018.06.013
- F. Azzolina-Jury, Novel boehmite transformation into γ-alumina and preparation of efficient nickel base alumina porous extrudates for plasma-assisted CO2 methanation, J. Ind. Eng. Chem., 71, 410-424 (2019). https://doi.org/10.1016/j.jiec.2018.11.053
- K. Stangeland, D. Kalai, H. Li, and Z. Yu, CO2 methanation: The effect of catalysts and reaction conditions, Energy Procedia, 105, 2022-2027 (2017). https://doi.org/10.1016/j.egypro.2017.03.577
- P. Frontera, A. Macario, M. Ferraro, and P. Antonucci, Supported catalysts for CO2 methanation: A review, Catalysts, 7, 59 (2017).
- S. B. Jo, J. H. Woo, J. H. Lee, T. Y. Kim, H. I. Kang, S. C. Lee, and J. C. Kim, CO2 green technologies in CO2 capture and direct utilization processes: methanation, reverse water-gas shift, and dry reforming of methane, Sustain. Energy Fuels, 4, 5543-5549 (2020). https://doi.org/10.1039/D0SE00951B
- B. C. Ekeoma, M. Yusuf, K. Johari, and B. Abdullah, Mesoporous silica supported Ni-based catalysts for methane dry reforming: A review of recent studies, Int. J. Hydrogen Energy, 47, 41596-41620 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.297
- B. Alrafei, I. Polaert, A. Ledoux, and F. Azzolina-Jury, Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation, Catal. Today, 346, 23-33 (2020). https://doi.org/10.1016/j.cattod.2019.03.026
- J. Lif, I. Odenbrand, and M. Skoglundh, Sintering of alumina-supported nickel particles under amination conditions: Support effects, Appl. Catal., A, 317, 62-69 (2007). https://doi.org/10.1016/j.apcata.2006.10.003
- W. K. Fan and M. Tahir, Recent trends in developments of active metals and heterogenous materials for catalytic CO2 hydrogenation to renewable methane: A review, J. Environ. Chem. Eng., 9, 105460 (2021).
- T. A. Le, M. S. Kim, S. H. Lee, T. W. Kim, and E. D. Park, CO and CO2 methanation over supported Ni catalysts, Catal. Today, 293, 89-96 (2017). https://doi.org/10.1016/j.cattod.2016.12.036
- D. Schmider, L. Maier, and O. Deutschmann, Reaction kinetics of CO and CO2 methanation over nickel, Ind. Eng. Chem. Res., 60, 5792-5805 (2021). https://doi.org/10.1021/acs.iecr.1c00389
- J. Ren, H. Guo, J. Yang, Z. Qin, J. Lin, and Z. Li, Insights into the mechanisms of CO2 methanation on Ni (111) surfaces by density functional theory, Appl. Surf. Sci., 351, 504-516 (2015). https://doi.org/10.1016/j.apsusc.2015.05.173
- R.-P. Ye, Q. Li, W. Gong, T. Wang, J. J. Razink, L. Lin, Y.-Y. Qin, Z. Zhou, H. Adidharma, and J. Tang, High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation, Appl. Catal., B, 268, 118474 (2020).
- W. Zhen, F. Gao, B. Tian, P. Ding, Y. Deng, Z. Li, H. Gao, and G. Lu, Enhancing activity for carbon dioxide methanation by encapsulating (111) facet Ni particle in metal-organic frameworks at low temperature, J. Catal., 348, 200-211 (2017). https://doi.org/10.1016/j.jcat.2017.02.031
- F. Song, Q. Zhong, Y. Yu, M. Shi, Y. Wu, J. Hu, and Y. Song, Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method, Int. J. Hydrogen Energy, 42, 4174-4183 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.141
- Y. Wang, H. Arandiyan, J. Scott, H. Dai, and R. Amal, Hierarchically porous network-like Ni/Co3O4: noble metal-free catalysts for carbon dioxide methanation, Adv. Sustain. Syst., 2, 1700119 (2018).
- X. Guo, A. Traitangwong, M. Hu, C. Zuo, V. Meeyoo, Z. Peng, and C. Li, Carbon dioxide methanation over nickel-based catalysts supported on various mesoporous material, Energy Fuels, 32, 3681-3689 (2018). https://doi.org/10.1021/acs.energyfuels.7b03826
- W. Zhen, B. Li, G. Lu, and J. Ma, Enhancing catalytic activity and stability for CO2 methanation on Ni@ MOF-5 via control of active species dispersion, Chem. Commun., 51, 1728-1731 (2015). https://doi.org/10.1039/C4CC08733J
- Z.-W. Zhao, X. Zhou, Y.-N. Liu, C.-C. Shen, C.-Z. Yuan, Y.-F. Jiang, S.-J. Zhao, L.-B. Ma, T.-Y. Cheang, and A.-W. Xu, Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO2 hydrogenation to methane at low temperatures, Catal. Sci. Technol., 8, 3160-3165 (2018). https://doi.org/10.1039/C8CY00468D
- F. Goodarzi, L. Kang, F. R. Wang, F. Joensen, S. Kegnaes, and J. Mielby, Methanation of carbon dioxide over zeolite-encapsulated nickel nanoparticles, ChemCatChem, 10, 1566-1570 (2018). https://doi.org/10.1002/cctc.201701946
- H. Razak, N. Abdullah, H. Setiabudi, C. Yee, and N. Ainirazali, Influenced of Ni loading on SBA-15 synthesized from oil Palm ash silica for syngas production, IOP Conf. Ser.: Mater. Sci. Eng., 702, 012024 (2019).
- G. Zhou, H. Liu, K. Cui, A. Jia, G. Hu, Z. Jiao, Y. Liu, and X. Zhang, Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation, Appl. Surf. Sci., 383, 248-252
- G. Zhou, H. Liu, K. Cui, H. Xie, Z. Jiao, G. Zhang, K. Xiong, and X. Zheng, Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure, Int. J. Hydrogen Energy, 42, 16108-16117 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.154
- J. Ashok, M. Ang, and S. Kawi, Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods, Catal. Today, 281, 304-311 (2017). https://doi.org/10.1016/j.cattod.2016.07.020
- Y. Yu, Y. M. Chan, Z. Bian, F. Song, J. Wang, Q. Zhong, and S. Kawi, Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of NiCeO2 catalyst: Kinetics and DRIFTS studies, Int. J. Hydrogen Energy, 43, 15191-15204 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.090
- S. Chen, C. Miao, L. Liang, and J. Ouyang, Oxygen vacancies-mediated CO2 methanation over Ni/CeO2ZrO2 solid solutions assembled on clay minerals, Energy Fuels, 36, 8340-8350 (2022). https://doi.org/10.1021/acs.energyfuels.2c01421
- Q. Liu, S. Wang, G. Zhao, H. Yang, M. Yuan, X. An, H. Zhou, Y. Qiao, and Y. Tian, CO2 methanation over ordered mesoporous NiRu-doped CaO-Al2O3 nanocomposites with enhanced catalytic performance, Int. J. Hydrogen Energy, 43, 239-250 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.052
- X. Zhao and G. Lu, Modulating and controlling active species dispersion over NiCo bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming, Int. J. Hydrogen Energy, 41, 3349-3362
- Y. Yan, Y. Dai, H. He, Y. Yu, and Y. Yang, A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation, Appl. Catal. B, 196, 108-116
- S. Hwang, U. G. Hong, J. Lee, J. H. Baik, D. J. Koh, H. Lim, and I. K. Song, Methanation of carbon dioxide over mesoporous nickel-M-alumina (M= Fe, Zr, Ni, Y, and Mg) xerogel catalysts: Effect of second metal, Catal. Lett., 142, 860-868 (2012). https://doi.org/10.1007/s10562-012-0842-0
- B. Mutz, M. Belimov, W. Wang, P. Sprenger, M.-A. Serrer, D. Wang, P. Pfeifer, W. Kleist, and J.-D. Grunwaldt, Potential of an alumina-supported Ni3Fe catalyst in the methanation of CO2: Impact of alloy formation on activity and stability, ACS Catal., 7, 6802-6814 (2017). https://doi.org/10.1021/acscatal.7b01896
- L. Zhang, L. Bian, Z. Zhu, and Z. Li, La-promoted Ni/Mg-Al catalysts with highly enhanced low-temperature CO2 methanation performance, Int. J. Hydrogen Energy, 43, 2197-2206 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.082
- M. C. Bacariza, I. Graca, J. M. Lopes, and C. Henriques, Ni-Ce/zeolites for CO2 hydrogenation to CH4: Effect of the metal incorporation order, ChemCatChem, 10, 2773-2781 (2018). https://doi.org/10.1002/cctc.201800204
- W. Gac, W. Zawadzki, M. Rotko, M. Greluk, G. Slowik, and G. Kolb, Effects of support composition on the performance of nickel catalysts in CO2 methanation reaction, Catal. Today, 357, 468-482 (2020). https://doi.org/10.1016/j.cattod.2019.07.026
- F. Jiao and H. Frei, Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts, Angew. Chem., 121, 1873-1876 (2009). https://doi.org/10.1002/ange.200805534
- M. Aziz, A. Jalil, S. Triwahyono, R. Mukti, Y. Taufiq-Yap, and M. Sazegar, Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation, Appl. Catal. B, 147, 359-368 (2014). https://doi.org/10.1016/j.apcatb.2013.09.015
- M. Aziz, A. Jalil, S. Triwahyono, and S. Sidik, Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles, Appl. Catal. A, 486, 115-122 (2014). https://doi.org/10.1016/j.apcata.2014.08.022
- M. Aziz, A. A. Jalil, S. Triwahyono, and M. Saad, CO2 methanation over Ni-promoted mesostructured silica nanoparticles: Influence of Ni loading and water vapor on activity and response surface methodology studies, Chem. Eng. J., 260, 757-764 (2015). https://doi.org/10.1016/j.cej.2014.09.031
- M. Bacariza, I. Graca, S. Bebiano, J. Lopes, and C. Henriques, Micro-and mesoporous supports for CO2 methanation catalysts: A comparison between SBA-15, MCM-41 and USY zeolite, Chem. Eng. Sci., 175, 72-83 (2018). https://doi.org/10.1016/j.ces.2017.09.027
- M. Mohammadijoo, Z. N. Khorshidi, S. Sadrnezhaad, and V. Mazinani, Synthesis and characterization of nickel oxide nanoparticle with wide band gap energy prepared via thermochemical processing, Nanosci. Nanotechnol. Int. J., 4, 6-9 (2014).
- A. Westermann, B. Azambre, M. Bacariza, I. Graca, M. Ribeiro, J. Lopes, and C. Henriques, The promoting effect of Ce in the CO2 methanation performances on NiUSY zeolite: A FTIR in situ/operando study, Catal. Today, 283, 74-81 (2017). https://doi.org/10.1016/j.cattod.2016.02.031
- L. Shen, J. Xu, M. Zhu, and Y.-F. Han, Essential role of the support for nickel-based CO2 methanation catalysts, ACS Catal., 10, 14581-14591 (2020). https://doi.org/10.1021/acscatal.0c03471
- A. Alarcon, J. Guilera, R. Soto, and T. Andreu, Higher tolerance to sulfur poisoning in CO2 methanation by the presence of CeO2, Appl. Catal. B, 263, 118346 (2020).
- S. Rahmani, M. Rezaei, and F. Meshkani, Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline γ-Al2O3 for CO2 methanation, J. Ind. Eng. Chem., 20, 1346-1352 (2014). https://doi.org/10.1016/j.jiec.2013.07.017
- B. Mutz, H. W. Carvalho, S. Mangold, W. Kleist, and J.-D. Grunwaldt, Methanation of CO2: Structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy, J. Catal., 327, 48-53 (2015). https://doi.org/10.1016/j.jcat.2015.04.006
- J. Tan, J. Wang, Z. Zhang, Z. Ma, L. Wang, and Y. Liu, Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO2 for CO2 methanation, Appl. Surf. Sci., 481, 1538-1548 (2019). https://doi.org/10.1016/j.apsusc.2019.03.217
- K. Zhao, W. Wang, and Z. Li, Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation, J. CO2 Util., 16, 236-244 (2016). https://doi.org/10.1016/j.jcou.2016.07.010
- J. Lin, C. Ma, Q. Wang, Y. Xu, G. Ma, J. Wang, H. Wang, C. Dong, C. Zhang, and M. Ding,. Enhanced low-temperature performance of CO2 methanation over mesoporous Ni/Al2O3-ZrO2 catalysts, Appl. Catal. B, 243, 262-272 (2019). https://doi.org/10.1016/j.apcatb.2018.10.059
- X. Jia, X. Zhang, N. Rui, X. Hu, and C.-j. Liu, Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity, Appl. Catal. B, 244, 159-169 (2019). https://doi.org/10.1016/j.apcatb.2018.11.024
- S. Ratchahat, M. Sudoh, Y. Suzuki, W. Kawasaki, R. Watanabe, and C. Fukuhara, Development of a powerful CO2 methanation process using a structured Ni/CeO2 catalyst, J. CO2 Util., 24, 210-219 (2018). https://doi.org/10.1016/j.jcou.2018.01.004
- M. Guo and G. Lu, The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts, Catal. Commun., 54, 55-60 (2014). https://doi.org/10.1016/j.catcom.2014.05.022
- X. Wang, L. Zhu, Y. Liu, and S. Wang, CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2, Sci. Total Environ., 625, 686-695 (2018). https://doi.org/10.1016/j.scitotenv.2017.12.308
- W. L. Vrijburg, E. Moioli, W. Chen, M. Zhang, B. J. Terlingen, B. Zijlstra, I. A. Filot, A. Zuttel, E. A. Pidko, and E. J. Hensen, Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation, ACS Catal., 9, 7823-7839 (2019). https://doi.org/10.1021/acscatal.9b01968
- S. K. Mohanty, B. B. Nayak, G. Purohit, A. Mondal, R. Purohit, and P. Sinha, Efficient way of precipitation to synthesize Ni2+-ion stabilized tetragonal zirconia nanopowders, Mater. Lett., 65, 959-961 (2011). https://doi.org/10.1016/j.matlet.2010.12.040
- C. Lv, L. Xu, M. Chen, Y. Cui, X. Wen, Y. Li, C.-e. Wu, B. Yang, Z. Miao, and X. Hu, Recent progresses in constructing the highly efficient Ni based catalysts with advanced low-temperature activity toward CO2 methanation, Front. Chem., 8, 269 (2020).
- A. I. Tsiotsias, N. D. Charisiou, I. V. Yentekakis, and M. A. Goula, Bimetallic Ni-based catalysts for CO2 methanation: A review, Nanomaterials, 11, 28 (2020).
- A. I. Tsiotsias, N. D. Charisiou, C. Italiano, G. D. Ferrante, L. Pino, A. Vita, V. Sebastian, S. J. Hinder, M. A. Baker, and A. Sharan, Ni-noble metal bimetallic catalysts for improved low temperature CO2 methanation, Appl. Surf. Sci., 646, 158945 (2024).
- M. Guo and G. Lu, The regulating effects of cobalt addition on the catalytic properties of silica-supported NiCo bimetallic catalysts for CO2 methanation, React. Kinet. Mech. Catal., 113, 101-113 (2014). https://doi.org/10.1007/s11144-014-0732-0
- Y. R. Dias and O. W. Perez-Lopez, Carbon dioxide methanation over Ni-Cu/SiO2 catalysts, Energy Convers. Manag., 203, 112214 (2020).