DOI QR코드

DOI QR Code

Recent Advances in the Development of Nickel Catalysts for Carbon Dioxide Methanation

이산화탄소 메탄화를 위한 니켈 촉매 기술 동향

  • Jaewon Jang (Carbon & Light Materials Group, Korea Institute of Industrial Technology) ;
  • Jungpil Kim (Carbon & Light Materials Group, Korea Institute of Industrial Technology)
  • 장재원 (한국생산기술연구원 탄소경량소재그룹) ;
  • 김정필 (한국생산기술연구원 탄소경량소재그룹)
  • Received : 2024.07.22
  • Accepted : 2024.08.13
  • Published : 2024.10.10

Abstract

This study reviews recent advancements in Ni-based catalysts for CO2 methanation, emphasizing high thermal stability and catalytic performance at elevated temperatures. Ni catalysts are preferred for their strong hydrogen adsorption, high activity, and methane selectivity. Strategies such as optimizing metal loading, using efficient supports, and introducing promoters enhance thermal stability by preventing sintering and carbon deposition. The produced methane serves as a valuable feedstock for synthetic fuels and chemicals, improving the economic feasibility of the CO2 methanation process. These findings underscore the importance of thermal stability in developing effective Ni catalysts for large-scale CO2 methanation.

본 논문은 CO2 메탄화를 위한 니켈 기반 촉매의 최근 발전을 검토하며, 특히 고온에서 높은 열 안정성과 촉매 성능을 달성하는 데 중점을 둔다. 니켈 촉매는 강한 수소 흡착력, 높은 활성도 및 메탄 선택성으로 인해 선호된다. 금속 담지 최적화, 고효율 지지체 사용, 조촉매 도입 등의 전략이 소결 및 탄소 침적을 방지하고 열 안정성을 향상시키기 위해 탐구되었다. 다양한 지지체는 촉매의 활성, 선택성 및 안정성에 중요한 영향을 미치는데, 촉매와 지지체간의 결합력이 특히 중요하다. 생성된 메탄은 합성 연료 및 화학 물질의 귀중한 원료로 사용되어 CO2 메탄화 공정의 경제적 타당성을 높인다. 이러한 결과는 대규모 CO2 메탄화를 위한 효율적인 니켈 촉매 개발에 있어 열 안정성의 중요한 역할을 강조한다. 결론적으로, Ni 촉매를 이용한 CO2 메탄화 반응은 기술적, 환경적, 경제적 측면에서 매우 유망한 분야이며, 지속적인 연구와 개발을 통해 더욱 발전할 것으로 기대된다. CO2 메탄화는 재생 가능한 에너지 자원의 활용과 온실가스 감축이라는 두 가지 목표를 동시에 달성할 수 있는 잠재력을 가지고 있어 미래 에너지 전환 과정에서 중요한 역할을 할 수 있다.

Keywords

Acknowledgement

본 논문은 2024년도 전북 농기계·부품 기술고도화를 위한 인프라 활용 기술개발 지원사업의 지원을 받아 수행된 연구임(No. IZ-24- 0039)

References

  1. H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman, A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, and D. A. Dixon, Catalysis research of relevance to carbon management: Progress, challenges, and opportunities, Chem. Rev., 101, 953-996 (2001). https://doi.org/10.1021/cr000018s
  2. N. S. Lewis and D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A., 103, 15729-15735 (2006). https://doi.org/10.1073/pnas.0603395103
  3. I. Dincer and C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy, 40, 11094-11111 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.035
  4. J. Rogelj, O. Geden, A. Cowie, and A. Reisinger, Three ways to improve net-zero emissions targets, Nature, 591, 365-368 (2021). https://doi.org/10.1038/d41586-021-00662-3
  5. H. Ishaq, I. Dincer, and C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities, Int. J. Hydrogen Energy, 47, 26238-26264 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.149
  6. W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, and E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo-and electro-chemical CO2 reduction, Chem. Rev., 115, 12936-12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197
  7. C. Gobel, S. Schmidt, C. Froese, Q. Fu, Y.-T. Chen, Q. Pan, and M. Muhler, Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure, J. Catal., 383, 33-41 (2020). https://doi.org/10.1016/j.jcat.2020.01.004
  8. A. Goryachev, A. Pustovarenko, G. Shterk, N. S. Alhajri, A. Jamal, M. Albuali, L. van Koppen, I. S. Khan, A. Russkikh, and A. Ramirez, A multi-parametric catalyst screening for CO2 hydrogenation to ethanol, ChemCatChem, 13, 3324-3332 (2021). https://doi.org/10.1002/cctc.202100302
  9. Z. Ma, and M. D. Porosoff, Development of tandem catalysts for CO2 hydrogenation to olefins, ACS Catal., 9, 2639-2656 (2019). https://doi.org/10.1021/acscatal.8b05060
  10. C. S. Budi, H. C. Wu, C. S. Chen, D. Saikia, and H. M. Kao, Ni nanoparticles supported on cage-type mesoporous silica for CO2 hydrogenation with high CH4 selectivity, ChemSusChem, 9, 2326-2331
  11. H. Chen, P. Liu, J. Liu, X. Feng, and S. Zhou, Mechanochemical in-situ incorporation of Ni on MgO/MgH2 surface for the selective O-/C-terminal catalytic hydrogenation of CO2 to CH4, J. Catal., 394, 397-405 (2021). https://doi.org/10.1016/j.jcat.2020.10.026
  12. J. Liu, G. Zhang, X. Jiang, J. Wang, C. Song, and X. Guo, Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons, Catal. Today, 371, 162-170 (2021). https://doi.org/10.1016/j.cattod.2020.07.032
  13. S. Saeidi, N. A. S. Amin, and M. R. Rahimpour, Hydrogenation of CO2 to value-added products-A review and potential future developments, J. CO2 Util., 5, 66-81 (2014). https://doi.org/10.1016/j.jcou.2013.12.005
  14. A. M. Abdel-Mageed, K. Wiese, M. Parlinska-Wojtan, J. Rabeah, A. Bruckner, and R. J. Behm, Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts, Appl. Catal. B, 270, 118846 (2020).
  15. A. Karelovic and P. Ruiz, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, J. Catal., 301, 141-153 (2013). https://doi.org/10.1016/j.jcat.2013.02.009
  16. X. Wang, Y. Hong, H. Shi, and J. Szanyi, Kinetic modeling and transient DRIFTSMS studies of CO2 methanation over Ru/Al2O3 catalysts, J. Catal., 343, 185-195
  17. J. Ashok, S. Pati, P. Hongmanorom, Z. Tianxi, C. Junmei, and S. Kawi, A review of recent catalyst advances in CO2 methanation processes, Catal. Today, 356, 471-489 (2020). https://doi.org/10.1016/j.cattod.2020.07.023
  18. A. Nemmour, A. Inayat, I. Janajreh, and C. Ghenai, Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review, Int. J. Hydrogen Energy, 48, 29011-29033 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.240
  19. M. Halabi, M. De Croon, J. Van der Schaaf, P. Cobden, and J. Schouten, Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer, Chem. Eng. J., 137, 568-578 (2008). https://doi.org/10.1016/j.cej.2007.05.019
  20. P. Schwach, X. Pan, and X. Bao, Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects, Chem. Rev., 117, 8497-8520 (2017). https://doi.org/10.1021/acs.chemrev.6b00715
  21. J. H. Park, J. Yang, D. Kim, H. Gim, W. Y. Choi, and J. W. Lee, Review of recent technologies for transforming carbon dioxide to carbon materials, Chem. Eng. J., 427, 130980 (2022).
  22. P. Gong, C. Tang, B. Wang, T. Xiao, H. Zhu, Q. Li, and Z. Sun, Precise CO2 reduction for bilayer graphene, ACS Cent. Sci., 8, 394-401 (2022). https://doi.org/10.1021/acscentsci.1c01578
  23. S. Zhu, S. Liang, Y. Tong, X. An, J. Long, X. Fu, and X. Wang, Photocatalytic reduction of CO2 with H2O to CH4 on Cu (I) supported TiO2 nanosheets with defective {001} facets, Phys. Chem. Chem. Phys., 17, 9761-9770 (2015). https://doi.org/10.1039/C5CP00647C
  24. Z. He, J. Tang, J. Shen, J. Chen, and S. Song, Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid, Appl. Surf. Sci., 364, 416-427
  25. F. Geppert, D. Liu, M. van Eerten-Jansen, E. Weidner, C. Buisman, and A. Ter Heijne, Bioelectrochemical power-to-gas: state of the art and future perspectives, Trends Biotechnol., 34, 879-894
  26. Z. Zhao, X. Peng, X. Liu, X. Sun, J. Shi, L. Han, G. Li, and J. Luo, Efficient and stable electroreduction of CO2 to CH4 on CuS nanosheet arrays, J. Mater. Chem. A, 5, 20239-20243 (2017). https://doi.org/10.1039/C7TA05507B
  27. N. Aryal, T. Kvist, F. Ammam, D. Pant, and L. D. Ottosen, An overview of microbial biogas enrichment, Bioresour. Technol., 264, 359-369 (2018). https://doi.org/10.1016/j.biortech.2018.06.013
  28. F. Azzolina-Jury, Novel boehmite transformation into γ-alumina and preparation of efficient nickel base alumina porous extrudates for plasma-assisted CO2 methanation, J. Ind. Eng. Chem., 71, 410-424 (2019). https://doi.org/10.1016/j.jiec.2018.11.053
  29. K. Stangeland, D. Kalai, H. Li, and Z. Yu, CO2 methanation: The effect of catalysts and reaction conditions, Energy Procedia, 105, 2022-2027 (2017). https://doi.org/10.1016/j.egypro.2017.03.577
  30. P. Frontera, A. Macario, M. Ferraro, and P. Antonucci, Supported catalysts for CO2 methanation: A review, Catalysts, 7, 59 (2017).
  31. S. B. Jo, J. H. Woo, J. H. Lee, T. Y. Kim, H. I. Kang, S. C. Lee, and J. C. Kim, CO2 green technologies in CO2 capture and direct utilization processes: methanation, reverse water-gas shift, and dry reforming of methane, Sustain. Energy Fuels, 4, 5543-5549 (2020). https://doi.org/10.1039/D0SE00951B
  32. B. C. Ekeoma, M. Yusuf, K. Johari, and B. Abdullah, Mesoporous silica supported Ni-based catalysts for methane dry reforming: A review of recent studies, Int. J. Hydrogen Energy, 47, 41596-41620 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.297
  33. B. Alrafei, I. Polaert, A. Ledoux, and F. Azzolina-Jury, Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation, Catal. Today, 346, 23-33 (2020). https://doi.org/10.1016/j.cattod.2019.03.026
  34. J. Lif, I. Odenbrand, and M. Skoglundh, Sintering of alumina-supported nickel particles under amination conditions: Support effects, Appl. Catal., A, 317, 62-69 (2007). https://doi.org/10.1016/j.apcata.2006.10.003
  35. W. K. Fan and M. Tahir, Recent trends in developments of active metals and heterogenous materials for catalytic CO2 hydrogenation to renewable methane: A review, J. Environ. Chem. Eng., 9, 105460 (2021).
  36. T. A. Le, M. S. Kim, S. H. Lee, T. W. Kim, and E. D. Park, CO and CO2 methanation over supported Ni catalysts, Catal. Today, 293, 89-96 (2017). https://doi.org/10.1016/j.cattod.2016.12.036
  37. D. Schmider, L. Maier, and O. Deutschmann, Reaction kinetics of CO and CO2 methanation over nickel, Ind. Eng. Chem. Res., 60, 5792-5805 (2021). https://doi.org/10.1021/acs.iecr.1c00389
  38. J. Ren, H. Guo, J. Yang, Z. Qin, J. Lin, and Z. Li, Insights into the mechanisms of CO2 methanation on Ni (111) surfaces by density functional theory, Appl. Surf. Sci., 351, 504-516 (2015). https://doi.org/10.1016/j.apsusc.2015.05.173
  39. R.-P. Ye, Q. Li, W. Gong, T. Wang, J. J. Razink, L. Lin, Y.-Y. Qin, Z. Zhou, H. Adidharma, and J. Tang, High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation, Appl. Catal., B, 268, 118474 (2020).
  40. W. Zhen, F. Gao, B. Tian, P. Ding, Y. Deng, Z. Li, H. Gao, and G. Lu, Enhancing activity for carbon dioxide methanation by encapsulating (111) facet Ni particle in metal-organic frameworks at low temperature, J. Catal., 348, 200-211 (2017). https://doi.org/10.1016/j.jcat.2017.02.031
  41. F. Song, Q. Zhong, Y. Yu, M. Shi, Y. Wu, J. Hu, and Y. Song, Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method, Int. J. Hydrogen Energy, 42, 4174-4183 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.141
  42. Y. Wang, H. Arandiyan, J. Scott, H. Dai, and R. Amal, Hierarchically porous network-like Ni/Co3O4: noble metal-free catalysts for carbon dioxide methanation, Adv. Sustain. Syst., 2, 1700119 (2018).
  43. X. Guo, A. Traitangwong, M. Hu, C. Zuo, V. Meeyoo, Z. Peng, and C. Li, Carbon dioxide methanation over nickel-based catalysts supported on various mesoporous material, Energy Fuels, 32, 3681-3689 (2018). https://doi.org/10.1021/acs.energyfuels.7b03826
  44. W. Zhen, B. Li, G. Lu, and J. Ma, Enhancing catalytic activity and stability for CO2 methanation on Ni@ MOF-5 via control of active species dispersion, Chem. Commun., 51, 1728-1731 (2015). https://doi.org/10.1039/C4CC08733J
  45. Z.-W. Zhao, X. Zhou, Y.-N. Liu, C.-C. Shen, C.-Z. Yuan, Y.-F. Jiang, S.-J. Zhao, L.-B. Ma, T.-Y. Cheang, and A.-W. Xu, Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO2 hydrogenation to methane at low temperatures, Catal. Sci. Technol., 8, 3160-3165 (2018). https://doi.org/10.1039/C8CY00468D
  46. F. Goodarzi, L. Kang, F. R. Wang, F. Joensen, S. Kegnaes, and J. Mielby, Methanation of carbon dioxide over zeolite-encapsulated nickel nanoparticles, ChemCatChem, 10, 1566-1570 (2018). https://doi.org/10.1002/cctc.201701946
  47. H. Razak, N. Abdullah, H. Setiabudi, C. Yee, and N. Ainirazali, Influenced of Ni loading on SBA-15 synthesized from oil Palm ash silica for syngas production, IOP Conf. Ser.: Mater. Sci. Eng., 702, 012024 (2019).
  48. G. Zhou, H. Liu, K. Cui, A. Jia, G. Hu, Z. Jiao, Y. Liu, and X. Zhang, Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation, Appl. Surf. Sci., 383, 248-252
  49. G. Zhou, H. Liu, K. Cui, H. Xie, Z. Jiao, G. Zhang, K. Xiong, and X. Zheng, Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure, Int. J. Hydrogen Energy, 42, 16108-16117 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.154
  50. J. Ashok, M. Ang, and S. Kawi, Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods, Catal. Today, 281, 304-311 (2017). https://doi.org/10.1016/j.cattod.2016.07.020
  51. Y. Yu, Y. M. Chan, Z. Bian, F. Song, J. Wang, Q. Zhong, and S. Kawi, Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of NiCeO2 catalyst: Kinetics and DRIFTS studies, Int. J. Hydrogen Energy, 43, 15191-15204 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.090
  52. S. Chen, C. Miao, L. Liang, and J. Ouyang, Oxygen vacancies-mediated CO2 methanation over Ni/CeO2ZrO2 solid solutions assembled on clay minerals, Energy Fuels, 36, 8340-8350 (2022). https://doi.org/10.1021/acs.energyfuels.2c01421
  53. Q. Liu, S. Wang, G. Zhao, H. Yang, M. Yuan, X. An, H. Zhou, Y. Qiao, and Y. Tian, CO2 methanation over ordered mesoporous NiRu-doped CaO-Al2O3 nanocomposites with enhanced catalytic performance, Int. J. Hydrogen Energy, 43, 239-250 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.052
  54. X. Zhao and G. Lu, Modulating and controlling active species dispersion over NiCo bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming, Int. J. Hydrogen Energy, 41, 3349-3362
  55. Y. Yan, Y. Dai, H. He, Y. Yu, and Y. Yang, A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation, Appl. Catal. B, 196, 108-116
  56. S. Hwang, U. G. Hong, J. Lee, J. H. Baik, D. J. Koh, H. Lim, and I. K. Song, Methanation of carbon dioxide over mesoporous nickel-M-alumina (M= Fe, Zr, Ni, Y, and Mg) xerogel catalysts: Effect of second metal, Catal. Lett., 142, 860-868 (2012). https://doi.org/10.1007/s10562-012-0842-0
  57. B. Mutz, M. Belimov, W. Wang, P. Sprenger, M.-A. Serrer, D. Wang, P. Pfeifer, W. Kleist, and J.-D. Grunwaldt, Potential of an alumina-supported Ni3Fe catalyst in the methanation of CO2: Impact of alloy formation on activity and stability, ACS Catal., 7, 6802-6814 (2017). https://doi.org/10.1021/acscatal.7b01896
  58. L. Zhang, L. Bian, Z. Zhu, and Z. Li, La-promoted Ni/Mg-Al catalysts with highly enhanced low-temperature CO2 methanation performance, Int. J. Hydrogen Energy, 43, 2197-2206 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.082
  59. M. C. Bacariza, I. Graca, J. M. Lopes, and C. Henriques, Ni-Ce/zeolites for CO2 hydrogenation to CH4: Effect of the metal incorporation order, ChemCatChem, 10, 2773-2781 (2018). https://doi.org/10.1002/cctc.201800204
  60. W. Gac, W. Zawadzki, M. Rotko, M. Greluk, G. Slowik, and G. Kolb, Effects of support composition on the performance of nickel catalysts in CO2 methanation reaction, Catal. Today, 357, 468-482 (2020). https://doi.org/10.1016/j.cattod.2019.07.026
  61. F. Jiao and H. Frei, Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts, Angew. Chem., 121, 1873-1876 (2009). https://doi.org/10.1002/ange.200805534
  62. M. Aziz, A. Jalil, S. Triwahyono, R. Mukti, Y. Taufiq-Yap, and M. Sazegar, Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation, Appl. Catal. B, 147, 359-368 (2014). https://doi.org/10.1016/j.apcatb.2013.09.015
  63. M. Aziz, A. Jalil, S. Triwahyono, and S. Sidik, Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles, Appl. Catal. A, 486, 115-122 (2014). https://doi.org/10.1016/j.apcata.2014.08.022
  64. M. Aziz, A. A. Jalil, S. Triwahyono, and M. Saad, CO2 methanation over Ni-promoted mesostructured silica nanoparticles: Influence of Ni loading and water vapor on activity and response surface methodology studies, Chem. Eng. J., 260, 757-764 (2015). https://doi.org/10.1016/j.cej.2014.09.031
  65. M. Bacariza, I. Graca, S. Bebiano, J. Lopes, and C. Henriques, Micro-and mesoporous supports for CO2 methanation catalysts: A comparison between SBA-15, MCM-41 and USY zeolite, Chem. Eng. Sci., 175, 72-83 (2018). https://doi.org/10.1016/j.ces.2017.09.027
  66. M. Mohammadijoo, Z. N. Khorshidi, S. Sadrnezhaad, and V. Mazinani, Synthesis and characterization of nickel oxide nanoparticle with wide band gap energy prepared via thermochemical processing, Nanosci. Nanotechnol. Int. J., 4, 6-9 (2014).
  67. A. Westermann, B. Azambre, M. Bacariza, I. Graca, M. Ribeiro, J. Lopes, and C. Henriques, The promoting effect of Ce in the CO2 methanation performances on NiUSY zeolite: A FTIR in situ/operando study, Catal. Today, 283, 74-81 (2017). https://doi.org/10.1016/j.cattod.2016.02.031
  68. L. Shen, J. Xu, M. Zhu, and Y.-F. Han, Essential role of the support for nickel-based CO2 methanation catalysts, ACS Catal., 10, 14581-14591 (2020). https://doi.org/10.1021/acscatal.0c03471
  69. A. Alarcon, J. Guilera, R. Soto, and T. Andreu, Higher tolerance to sulfur poisoning in CO2 methanation by the presence of CeO2, Appl. Catal. B, 263, 118346 (2020).
  70. S. Rahmani, M. Rezaei, and F. Meshkani, Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline γ-Al2O3 for CO2 methanation, J. Ind. Eng. Chem., 20, 1346-1352 (2014). https://doi.org/10.1016/j.jiec.2013.07.017
  71. B. Mutz, H. W. Carvalho, S. Mangold, W. Kleist, and J.-D. Grunwaldt, Methanation of CO2: Structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy, J. Catal., 327, 48-53 (2015). https://doi.org/10.1016/j.jcat.2015.04.006
  72. J. Tan, J. Wang, Z. Zhang, Z. Ma, L. Wang, and Y. Liu, Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO2 for CO2 methanation, Appl. Surf. Sci., 481, 1538-1548 (2019). https://doi.org/10.1016/j.apsusc.2019.03.217
  73. K. Zhao, W. Wang, and Z. Li, Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation, J. CO2 Util., 16, 236-244 (2016). https://doi.org/10.1016/j.jcou.2016.07.010
  74. J. Lin, C. Ma, Q. Wang, Y. Xu, G. Ma, J. Wang, H. Wang, C. Dong, C. Zhang, and M. Ding,. Enhanced low-temperature performance of CO2 methanation over mesoporous Ni/Al2O3-ZrO2 catalysts, Appl. Catal. B, 243, 262-272 (2019). https://doi.org/10.1016/j.apcatb.2018.10.059
  75. X. Jia, X. Zhang, N. Rui, X. Hu, and C.-j. Liu, Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity, Appl. Catal. B, 244, 159-169 (2019). https://doi.org/10.1016/j.apcatb.2018.11.024
  76. S. Ratchahat, M. Sudoh, Y. Suzuki, W. Kawasaki, R. Watanabe, and C. Fukuhara, Development of a powerful CO2 methanation process using a structured Ni/CeO2 catalyst, J. CO2 Util., 24, 210-219 (2018). https://doi.org/10.1016/j.jcou.2018.01.004
  77. M. Guo and G. Lu, The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts, Catal. Commun., 54, 55-60 (2014). https://doi.org/10.1016/j.catcom.2014.05.022
  78. X. Wang, L. Zhu, Y. Liu, and S. Wang, CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2, Sci. Total Environ., 625, 686-695 (2018). https://doi.org/10.1016/j.scitotenv.2017.12.308
  79. W. L. Vrijburg, E. Moioli, W. Chen, M. Zhang, B. J. Terlingen, B. Zijlstra, I. A. Filot, A. Zuttel, E. A. Pidko, and E. J. Hensen, Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation, ACS Catal., 9, 7823-7839 (2019). https://doi.org/10.1021/acscatal.9b01968
  80. S. K. Mohanty, B. B. Nayak, G. Purohit, A. Mondal, R. Purohit, and P. Sinha, Efficient way of precipitation to synthesize Ni2+-ion stabilized tetragonal zirconia nanopowders, Mater. Lett., 65, 959-961 (2011). https://doi.org/10.1016/j.matlet.2010.12.040
  81. C. Lv, L. Xu, M. Chen, Y. Cui, X. Wen, Y. Li, C.-e. Wu, B. Yang, Z. Miao, and X. Hu, Recent progresses in constructing the highly efficient Ni based catalysts with advanced low-temperature activity toward CO2 methanation, Front. Chem., 8, 269 (2020).
  82. A. I. Tsiotsias, N. D. Charisiou, I. V. Yentekakis, and M. A. Goula, Bimetallic Ni-based catalysts for CO2 methanation: A review, Nanomaterials, 11, 28 (2020).
  83. A. I. Tsiotsias, N. D. Charisiou, C. Italiano, G. D. Ferrante, L. Pino, A. Vita, V. Sebastian, S. J. Hinder, M. A. Baker, and A. Sharan, Ni-noble metal bimetallic catalysts for improved low temperature CO2 methanation, Appl. Surf. Sci., 646, 158945 (2024).
  84. M. Guo and G. Lu, The regulating effects of cobalt addition on the catalytic properties of silica-supported NiCo bimetallic catalysts for CO2 methanation, React. Kinet. Mech. Catal., 113, 101-113 (2014). https://doi.org/10.1007/s11144-014-0732-0
  85. Y. R. Dias and O. W. Perez-Lopez, Carbon dioxide methanation over Ni-Cu/SiO2 catalysts, Energy Convers. Manag., 203, 112214 (2020).