DOI QR코드

DOI QR Code

A Review on Adsorbent Materials for Industrial Wastewater Treatment

산업폐수 처리용 흡착 소재 연구 동향

  • Sang Hoon Kim (Extreme Materials Research Center, Korea Institute of Science and Technology) ;
  • Suk Soon Choi (Department of Biological and Environmental Engineering, Semyung University)
  • 김상훈 (한국과학기술연구원 극한소재연구센터) ;
  • 최석순 (세명대학교 바이오환경공학과)
  • Received : 2024.08.21
  • Accepted : 2024.08.28
  • Published : 2024.10.10

Abstract

Industrial wastewater contains various harmful pollutants, and effectively treating these pollutants is crucial for environmental protection and public health. This review paper examines various adsorbent materials used in industrial wastewater treatment. The characteristics and applications of key adsorbents, such as activated carbon, zeolite, nanomaterials, and bioadsorbents, are introduced, and the advantages and disadvantages of each material are discussed. Furthermore, the paper suggests directions for the improvement of adsorbent materials and future research, emphasizing the importance of developing sustainable materials and utilizing nanotechnology. The need for modeling and optimization of adsorption processes is also highlighted. This paper underscores the significance of adsorbent materials in industrial wastewater treatment and provides a guide for future research directions.

산업폐수는 다양한 유해 오염물질을 포함하고 있으며, 이를 효과적으로 처리하는 것은 환경 보호와 쾌적환 환경 유지에 매우 중요한 과제이다. 본 리뷰 논문은 산업폐수 처리에 사용되는 활성탄, 제올라이트, 나노소재, 바이오 흡착제와 같은 주요 흡착 소재의 특성과 적용 사례를 소개하고, 각 소재의 장단점을 논의하였다. 또한, 흡착 소재의 개선 방향과 미래 연구 방향을 제시하였다. 아울러 흡착 모델링 고도화 및 공정 최적화, 지속 가능한 소재 개발과 나노기술을 활용하는 것을 중요한 미래 연구 과제 주제로 강조하였다. 최종적으로 본 리뷰 논문은 산업폐수 처리에 있어 흡착 소재의 중요성 및 향후 연구에 대한 방향성을 제시하고자 했다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 산업기술혁신사업(산업폐수 처리용 석유계 잔사유 기반 다공성 흡착소재 개발: 20012763)의 지원 및 한국과학기술연구원 연구비 지원을 받아 수행되었습니다.

References

  1. Y. J. Choe, J. Kim, I.-S. Choi, and S. H. Kim, Metal oxides for Fenton reactions toward radical-assisted water treatment: A review, J. Ind. Eng. Chem., Doi.org/10.1016/j.jiec.2024.08.006. 
  2. T. T. Le, M. Lee, K. H. Chae, G.-H. Moon, and S. H. Kim, Control of copper element in mesoporous iron oxide photocatalysts towards UV light-assisted superfast mineralization of isopropyl alcohol with peroxydisulfate, Chem. Eng. J., 451, 139048 (2023). 
  3. A. A. Aryee, F. M. Mpatani, R. Han, X. Shi, and L. Qu, A review on adsorbents for the remediation of wastewater: Antibacterial and adsorption study, J. Environ. Chem. Eng., 9, 106907 (2021). 
  4. L. N. Pincus, A. W. Lounsbury, and J. B. Zimmerman, Toward realizing multifunctionality: Photoactive and selective adsorbents for the removal of inorganics in water treatment, Acc. Chem. Res., 52, 1206-1214 (2019).  https://doi.org/10.1021/acs.accounts.8b00668
  5. Faheem, J. Du, S. H. Kim, M. A. Hassan, S. Irshad, and J. Bao, Application of biochar in advanced oxidation processes: supportive, adsorptive, and catalytic role, Environ. Sci. Pollut. Res., 27, 37286-37312 (2020).  https://doi.org/10.1007/s11356-020-07612-y
  6. S. A. Obaid, Langmuir, Freundlich and Tamkin adsorption isotherms and kinetics for the removal artichoke tournefortii straw from agricultural waste, J. Phys. Conf. Ser., 1664, 012011 (2020). 
  7. K. Azam, N. Shezad, I. Shafiq, P. Akhter, F. Akhtar, F. Jamil, S. Shafique, Y.-K. Park, and M. Hussain, A review on activated carbon modifications for the treatment of wastewater containing anionic dyes, Chemosphere, 306, 135566 (2022). 
  8. M. Irannajad and H. Kamran Haghighi, Removal of heavy metals from polluted solutions by zeolitic adsorbents: A review, Environ. Process., 8, 7-35 (2021).  https://doi.org/10.1007/s40710-020-00476-x
  9. H. Najafi, S. Farajfaed, S. Zolgharnian, S. H. Mosavi Mirak, N. Asasian-Kolur, and S. Sharifian, A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes, Process Saf. Environ. Prot., 147, 8-36 (2021).  https://doi.org/10.1016/j.psep.2020.09.028
  10. A. Saravanan, P. S. Kumar, R. V. Hemavathy, S. Jeevanantham, M. J. Jawahar, J. P. Neshaanthini, and R. Saravanan, A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives, Chemosphere, 307, 135713 (2022). 
  11. I. Anastopoulos, J. O. Ighalo, C. Adaobi Igwegbe, D. A. Giannakoudakis, K. S. Triantafyllidis, I. Pashalidis, and D. Kalderis, Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water, J. Mol. Liq., 342, 117540 (2021). 
  12. J. Alvarez, G. Lopez, M. Amutio, J. Bilbao, and M. Olazar, Physical activation of rice husk pyrolysis char for the production of high surface area activated carbons, Ind. Eng. Chem. Res., 54, 7241-7250 (2015).  https://doi.org/10.1021/acs.iecr.5b01589
  13. M. J. Prauchner, K. Sapag, and F. Rodriguez-Reinoso, Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2, Carbon, 110, 138-147 (2016).  https://doi.org/10.1016/j.carbon.2016.08.092
  14. Y. Ma, W.-J. Liu, N. Zhang, Y.-S. Li, H. Jiang, and G.-P. Sheng, Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution, Bioresour. Technol., 169, 403-408 (2014).  https://doi.org/10.1016/j.biortech.2014.07.014
  15. M. Nascimento, P. S. M. Soares, V. P. de Souza, Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method, Fuel, 88, 1714-1719 (2009).  https://doi.org/10.1016/j.fuel.2009.01.007
  16. A. Khaleque, M. M. Alam, M. Hoque, S. Mondal, J. B. Haider, B. Xu, M. A. H. Johir, A. K. Karmakar, J. L. Zhou, M. B. Ahmed, and M. A. Moni, Zeolite synthesis from low-cost materials and environmental applications: A review, Environ. Adv., 2, 100019 (2020). 
  17. X. Ji, M. Zhang, Y. Wang, Y. Song, Y. Ke, and Y. Wang, Immobilization of ammonium and phosphate in aqueous solution by zeolites synthesized from fly ashes with different compositions, J. Ind. Eng. Chem., 22, 1-7 (2015).  https://doi.org/10.1016/j.jiec.2014.06.017
  18. L. Roshanfekr Rad and M. Anbia, Zeolite-based composites for the adsorption of toxic matters from water: A review, J. Environ. Chem. Eng., 9, 106088 (2021). 
  19. S. Zahmatkesh, M. Hajiaghaei-Keshteli, A. Bokhari, S. Sundaramurthy, B. Panneerselvam, and Y. Rezakhani, Wastewater treatment with nanomaterials for the future: A state-of-the-art review, Environ. Res., 216, 114652 (2023). 
  20. M. Nasrollahzadeh, M. Sajjadi, S. Iravani, and R. S. Varma, Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives, J. Hazard. Mater., 401, 123401 (2021). 
  21. X. Zhu, T. T. Le, J. Du, T. Xu, Y. Cui, H. Ling, and S. H. Kim, Novel core-shell sulfidated nano-Fe(0) particles for chromate sequestration: Promoted electron transfer and Fe(II) production, Chemosphere, 284, 131379 (2021). 
  22. A. I. Osman, E. M. A. El-Monaem, A. M. Elgarahy, C. O. Aniagor, M. Hosny, M. Farghali, E. Rashad, M. I. Ejimofor, E. A. Lopez-Maldonado, I. Ihara, P.-S. Yap, D. W. Rooney, and A. S. Eltaweil, Methods to prepare biosorbents and magnetic sorbents for water treatment: A review, Environ. Chem. Lett., 21, 2337-2398 (2023).  https://doi.org/10.1007/s10311-023-01603-4
  23. H. S. Kim, S. S. Jeong, J. G. Lee, J.-H. Yoon, S.-P. Lee, K.-R. Kim, S. C. Kim, M. B. Kirkham, and J. E. Yang, Biologically produced sulfur as a novel adsorbent to remove Cd2+ from aqueous solutions, J. Hazard. Mater., 419, 126470 (2021). 
  24. E. H. M. Cavalcante, I. C. M. Candido, H. P. de Oliveira, K. B. Silveira, T. Victor de Souza Alvares, E. C. Lima, M. Thyrel, S. H. Larsson, and G. Simoes dos Reis, 3-Aminopropyl-triethoxysilane-functionalized tannin-rich grape biomass for the adsorption of methyl orange dye: Synthesis, characterization, and the adsorption mechanism, ACS Omega, 7, 18997-19009 (2022).  https://doi.org/10.1021/acsomega.2c02101
  25. K. G. Akpomie and J. Conradie, Advances in application of cotton-based adsorbents for heavy metals trapping, surface modifications and future perspectives, Ecotoxicol. Environ. Saf., 201, 110825 (2020). 
  26. H. Li, X. Zhu, J. Zhao, G. Ling, and P. Zhang, Emerging adsorbents: Applications of sodium alginate/graphene oxide composite materials in wastewater treatment, J. Water Process Eng., 59, 105100 (2024). 
  27. D. A. Gkika, A. C. Mitropoulos, and G. Z. Kyzas, Why reuse spent adsorbents? The latest challenges and limitations, Sci. Total Environ., 822, 153612 (2022). 
  28. M. Faheem, M. Azher Hassan, J. Du, and B. Wang, Harnessing potential of smart and conventional spent adsorbents: Global practices and sustainable approaches through regeneration and tailored recycling, Sep. Purif. Technol., 354, 128907 (2025). 
  29. F. Karimi, A. Ayati, B. Tanhaei, A. L. Sanati, S. Afshar, A. Kardan, Z. Dabirifar, and C. Karaman, Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment, Environ. Res., 203, 111753 (2022). 
  30. M. H. Dehghani, S. Gholami, R. R. Karri, E. C. Lima, A. H. Mahvi, S. Nazmara, and M. Fazlzadeh, Process modeling, characterization, optimization, and mechanisms of fluoride adsorption using magnetic agro-based adsorbent, J. Environ. Manage., 286, (2021) 112173.