DOI QR코드

DOI QR Code

Improving CO2/CH4 Gas Separation Capability of Pore Controlled Activated Carbon Pellets through Chemical Vapor Deposition

화학기상증착법에 의하여 기공이 제어된 활성탄소펠렛의 CO2/CH4 가스 분리능 향상

  • Eunseon Chae (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Naeun Ha (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chaehun Lim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chung Gi Min (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seongmin Ha (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Young-Seak Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 채은선 (충남대학교 응용화학공학과) ;
  • 하나은 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 민충기 (충남대학교 응용화학공학과) ;
  • 하성민 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2024.08.07
  • Accepted : 2024.08.24
  • Published : 2024.10.10

Abstract

Technologies that separate and capture CO2 from landfill gas are attracting attention as a way to reduce CO2 emitted into the atmosphere. In this study, we aimed to improve the gas separation ability of CO2/CH4 mixed gas by controlling the pores of activated carbon pellets (ACPs) through chemical vapor deposition of CH4 and also investigated the adsorption characteristics as a function of reaction time. Both the specific surface area and the micropore volume increased up to a maximum of 997.8 m2/g and 0.392 cm3/g, respectively, following the carbon deposition through CH4. In addition, the CO2 adsorption quantity increased up to a maximum of 97.4 cm3/g as the deposition time increased. As a result, the pore structure of the ACPs could be controlled via the chemical vapor deposition of CH4 and the ACPs' CO2/CH4 gas separation performance was improved. The improved CO2 adsorption capacity was ascribed to an increase in specific surface area by heat treatment and an increase in the volume of below 0.61 nm micropores due to carbon deposition.

대기 중에 방출되는 CO2를 감축하기 위하여 매립지가스로부터 CO2를 분리하여 포집하는 기술이 주목받고 있다. 본 연구에서는 CH4의 화학기상증착법을 통한 활성탄소펠렛의 기공 제어로 CO2/CH4 혼합가스의 가스 분리능을 향상시키고자 하였으며, 반응시간에 따른 흡착 특성을 고찰하였다. CH4를 통한 탄소의 증착 이후 비표면적과 미세 기공 부피 모두 증가하였으며 각각 최대 997.8 m2/g, 0.392 cm3/g까지 증가하였다. 또한 증착 시간의 증가에 따라 CO2 흡착량이 최대 97.4 cm3/g까지 증가하였다. 탄소가 증착된 시료는 미처리 시료에 비하여 파과시간이 최대 32.5% 지연되었다. 결과적으로 CH4의 화학기상증착법을 통하여 활성탄소펠렛의 기공 구조를 제어하였으며, 활성탄소펠렛의 CO2/CH4 가스 분리능을 향상시킬 수 있었다. 이는 열처리에 의한 비표면적의 증가와 탄소 증착으로 인한 0.61 nm 이하의 초미세 기공 부피 증가에 의하여 향상된 CO2 흡착능에 기인하였다.

Keywords

Acknowledgement

본 연구는 한국 산업기술평가관리원의 탄소산업기반조성사업(고순도 가스 분리용 탄소분자체 및 시스템 제조기술 개발: 20016789)의 지원에 의하여 수행하였으며 이에 감사드립니다.

References

  1. A. Rahimalimamaghani, R. Ramezani, D. A. P. Tanaka, and F. Gallucci, Carbon molecular sieve membranes for selective CO2/CH4 and CO2/N2 separation: Experimental study, optimal process design, and economic analysis, Ind. Eng. Chem. Res., 62, 19116-19132 (2023).
  2. J. G. Jia, Y. S. Wang, Y. J. Feng, G. Q. Hu, J. Lin, Y. Huang, Y. J. Zhang, Z. Y. Liu, C. C. Tang, and C. Yu, Hierarchically porous boron nitride/HKUST-1 hybrid materials: Synthesis, CO2 adsorption capacity, and CO2/N2 and CO2/CH4 selectivity, Ind. Eng. Chem. Res., 60, 2463-2471 (2021). https://doi.org/10.1021/acs.iecr.0c05701
  3. Y. Zhang, K. Chen, C. Lv, T. Wu, Y. Wen, H. He, S. Yu, and L. a. Wang, Adsorption separation of CO2/CH4 from landfill gas by ethanolamine-modified silica gel, Water Air Soil Pollut., 232, 1-11 (2021). https://doi.org/10.1007/s11270-020-04943-x
  4. R. Gao, C. Zhang, Y.-J. Lee, G. Kwak, K.-W. Jun, S. K. Kim, H.-G. Park, and G. Guan, Sustainable production of methanol using landfill gas via carbon dioxide reforming and hydrogenation: Process development and techno-economic analysis, J. Clean. Prod., 272, 122552 (2020).
  5. G. V. Brigagao, J. L. de Medeiros, F. A. Ofelia de Queiroz, H. Mikulcic, and N. Duic, A zero-emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration, Renew. Sust. Energ. Rev., 138, 110686 (2021).
  6. C. Mukherjee, J. Denney, E. G. Mbonimpa, J. Slagley, and R. Bhowmik, A review on municipal solid waste-to-energy trends in the USA, Renew. Sust. Energ. Rev., 119, 109512 (2020).
  7. C. Yaman, I. Anil, and O. Alagha, Potential for greenhouse gas reduction and energy recovery from MSW through different waste management technologies, J. Clean. Prod., 264, 121432 (2020).
  8. S. Wen, W.-C. Cheng, D. Li, and W. Hu, Evaluating gas breakthrough pressure and gas permeability in a landfill cover layer for mitigation of hazardous gas emissions, J. Environ. Manage., 336, 117617 (2023).
  9. F. Liu, Y. Zhang, P. Zhang, M. Xu, T. Tan, J. Wang, Q. Deng, L. Zhang, Y. Wan, and S. Deng, Facile preparation of N and O-rich porous carbon from palm sheath for highly selective separation of CO2/CH4/N2 gas-mixture, Chem. Eng. J., 399, 125812 (2020).
  10. Q. Zhang, X. C. Ma, C. He, Q. L. Chen, and B. J. Zhang, Experiment and molecular simulation for liquid phase adsorption of triethylenetetramine on activated carbon: equilibrium, kinetics, thermodynamics and molecular behavior, Carbon Lett., 33, 1977- 1991 (2023). https://doi.org/10.1007/s42823-023-00589-x
  11. O. F. Cruz Jr, I. Campello-Gomez, M. E. Casco, J. Serafin, J. Silvestre-Albero, M. Martinez-Escandell, D. Hotza, and C. R. Rambo, Enhanced CO2 capture by cupuassu shell-derived activated carbon with high microporous volume, Carbon Lett., 33, 727-735 (2023). https://doi.org/10.1007/s42823-022-00454-3
  12. C. Lim, C. H. Kwak, S. G. Jeong, D. Kim, and Y.-S. Lee, Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment, Carbon Lett., 33, 139-145 (2023). https://doi.org/10.1007/s42823-022-00410-1
  13. C. Lim, S. G. Jeong, S. Ha, N. Ha, S. Myeong, and Y.-S. Lee, Unique CO2 adsorption of pine needle biochar-based activated carbons by induction of functionality transition, J. Ind. Eng. Chem., 124, 201-210 (2023). https://doi.org/10.1016/j.jiec.2023.04.008
  14. S. Ha, S. G. Jeong, S. Myeong, and Y.-S. Lee, High-performance CO2 adsorption of jellyfish-based activated carbon with many micropores and various heteroatoms, J. CO2 Util., 76, 102589 (2023).
  15. L. Lei, A. Lindbrathen, X. Zhang, E. P. Favvas, M. Sandru, M. Hillestad, and X. He, Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening, J. Membr. Sci., 614, 118529 (2020).
  16. M. Hou, W. Qi, L. Li, R. Xu, J. Xue, Y. Zhang, C. Song, and T. Wang, Carbon molecular sieve membrane with tunable microstructure for CO2 separation: Effect of multiscale structures of polyimide precursors, J. Membr. Sci., 635, 119541 (2021).
  17. R. Ojeda-Lopez, E. Vilarrasa-Garcia, D. C. S. Azevedo, C. Felipe, J. A. Cecilia, and E. Rodriguez-Castellon, CO2 selectivity in CO2:CH4 and CO2:N2 mixtures on carbon microfibers (CMFs) and carbon microspheres (CMSs), Fuel, 324, 124242 (2022).
  18. K. Setnickova, T.-C. Huang, C.-T. Wang, Y.-C. Lin, S. L. Lee, G.-L. Zhuang, K.-L. Tung, H.-H. Tseng, and P. Uchytil, Realizing the impact of the intermediate layer structure on the CO2/CH4 separation performance of carbon molecular sieving membranes: insights from experimental synthesis and molecular simulation, Sep. Purif. Technol., 269, 118627 (2021).
  19. A. Wahby, J. M. Ramos-Fernandez, M. Martinez-Escandell, A. Sepulveda-Escribano, J. Silvestre-Albero, and F. Rodriguez-Reinoso, High-surface-area carbon molecular sieves for selective CO2 adsorption, ChemSusChem, 3, 974-981 (2010). https://doi.org/10.1002/cssc.201000083
  20. U. Morali, H. Demiral, and S. Sensoz, Synthesis of carbon molecular sieve for carbon dioxide adsorption: Chemical vapor deposition combined with Taguchi design of experiment method, Powder Technol., 355, 716-726 (2019). https://doi.org/10.1016/j.powtec.2019.07.101
  21. J. Nie, N. Yoshizawa, and K. Tanaka, Effect of chemical vapor deposition of toluene on gas separation performance of carbon molecular sieve membranes, J. Porous Mater., 29, 393-404 (2022). https://doi.org/10.1007/s10934-021-01188-9
  22. F. Banisheykholeslami, A. A. Ghoreyshi, M. Mohammadi, and K. Pirzadeh, Synthesis of a carbon molecular sieve from broom corn stalk via carbon deposition of methane for the selective separation of a CO2/CH4 mixture, CLEAN-Soil Air Water, 43, 1084-1092 (2015). https://doi.org/10.1002/clen.201400112
  23. H. Demiral, and I. Demiral, Preparation and characterization of carbon molecular sieves from chestnut shell by chemical vapor deposition, Adv. Powder Technol., 29, 3033-3039 (2018). https://doi.org/10.1016/j.apt.2018.07.015
  24. Y. Yamane, H. Tanaka, and M. T. Miyahara, In silico synthesis of carbon molecular sieves for high-performance air separation, Carbon, 141, 626-634 (2019). https://doi.org/10.1016/j.carbon.2018.10.021
  25. S. Myeong, S. Ha, C. Lim, C. G. Min, N. Ha, B. K. Kim, and Y.-S. Lee, Synergistic effects of fluorine plasma on improving carbon aerogel anodes performance in lithium-ion batteries, J. Electroanal. Chem., 964, 118332 (2024).
  26. E. Barsotti, S. P. Tan, M. Piri, and J.-H. Chen, Capillary-condensation hysteresis in naturally-occurring nanoporous media, Fuel, 263, 116441 (2020).
  27. N. F. Attia, M. Jung, J. Park, H. Jang, K. Lee, and H. Oh, Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation, Chem. Eng. J., 379, 122367 (2020).
  28. A. Mukhtar, S. Saqib, N. B. Mellon, M. Babar, S. Rafiq, S. Ullah, M. A. Bustam, A. G. Al-Sehemi, N. Muhammad, and M. Chawla, CO2 capturing, thermo-kinetic principles, synthesis and amine functionalization of covalent organic polymers for CO2 separation from natural gas: A review, J. Nat. Gas Sci. Eng., 77, 103203 (2020).
  29. M. Heuchel, G. M. Davies, E. Buss, and N. A. Seaton, Adsorption of carbon dioxide and methane and their mixtures on an activated carbon: Simulation and experiment, Langmuir, 15, 8695-8705 (1999). https://doi.org/10.1021/la9904298
  30. J. Luo, B. Liu, R. Shi, Y. Guo, Q. Feng, Z. Liu, L. Li, and K. Norinaga, The effects of nitrogen functional groups and narrow micropore sizes on CO2 adsorption onto N-doped biomass-based porous carbon under different pressure, Microporous Mesoporous Mater., 327, 111404 (2021).