DOI QR코드

DOI QR Code

Multiphysics Simulations of Dry Reforming of Methane in a Fixed Bed Reactor with Different Catalyst Types

다양한 촉매 유형에 따른 고정층 반응기에서의 메탄 건식 개질 다중물리 시뮬레이션 연구

  • Soo-Won Son (School of Chemical Engineering, Chonnam National University) ;
  • Boram Gu (School of Chemical Engineering, Chonnam National University)
  • 손수원 (전남대학교 화학공학부) ;
  • 구보람 (전남대학교 화학공학부)
  • Received : 2024.07.15
  • Accepted : 2024.08.05
  • Published : 2024.10.10

Abstract

Dry reforming of methane (DRM) uses natural gas and carbon dioxide as reactants to produce hydrogen, potentially providing a solution for reducing greenhouse gas emissions and offering an alternative carbon-free energy source. However, since DRM is highly endothermic, its application and commercialization are limited by rapid temperature decrease and resulting catalyst inactivation. Consequently, research into catalyst development and reactor design to mitigate temperature decline is essential. In this study, computational fluid dynamics (CFD) is utilized to develop a multiphysics simulation platform for DRM within a fixed-bed reactor, employing two types of spherical catalysts: eggshell and uniform types. Our findings indicate that the eggshell model can maintain a higher temperature at the reactor's core than the uniform catalyst model by approximately 20 K. Furthermore, the eggshell model demonstrates superior methane conversion and hydrogen yield due to its ability to suppress excessively rapid reactions. These results underscore the benefits of eggshell catalysts in highly endothermic reactors, such as those used in DRM processes. The developed simulation platform can be used to assess various combinations of reactor and catalyst designs and further optimize their dimensions and operational protocols.

메탄 건식 개질은 천연가스와 이산화탄소를 사용해 수소를 생산하는 방식으로 온실가스 배출을 줄이고 무탄소 에너지를 제공할 수 있다. 그러나 강한 흡열 반응으로 인해 온도 급강하와 그로 인한 촉매 비활성화가 발생함에 따라 실증 및 상용화에 어려움이 있다. 본 연구에서는 고정층 반응기 내 메탄 건식 개질 공정을 시뮬레이션하기 위해 전산유체역학 기반의 다중물리 시뮬레이션 플랫폼을 개발하고, 두 종류의 구형 촉매(에그쉘형과 균일형)의 성능을 비교하였다. 에그쉘 모델은 균일 촉매 모델에 비해 반응기 중심부에서 약 20 K 높은 온도를 유지할 수 있음을 보였다. 또한, 에그쉘 모델은 급속하게 진행되는 반응을 억제하여 전반적인 메탄 전환율과 수소 수율에서 우수한 성능을 나타냈다. 개발된 시뮬레이션 플랫폼은 다양한 반응기 및 촉매 설계 조합을 평가하고 반응기 크기와 운영 프로토콜을 최적화하는데 사용될 수 있다.

Keywords

Acknowledgement

This study was financially supported by Chonnam National University (Grant number: 2021-2189).

References

  1. M. Mikkelsen, M. Jorgensen, and F. C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci., 3, 43-81 (2010). https://doi.org/10.1039/B912904A
  2. C. McGladeand and P. Ekins, The geographical distribution of fossil fuels unused when limiting global warming to 2 ℃, Nature, 517, 187-190 (2015). https://doi.org/10.1038/nature14016
  3. R. Yukesh Kannah, S. Kavitha, Preethi, O. Parthiba Karthikeyan, G. Kumar, N. V. Dai-Viet, and J. Rajesh Banu, Techno-economic assessment of various hydrogen production methods - A review, Bioresour. Technol., 319, 124175 (2021).
  4. C. M. Kalamaras and A. M. Efstathiou, Hydrogen production technologies: Current state and future developments, Conference Papers in Energy, 2013, 1-9 (2013).
  5. H. W. Kim, K. M. Kang, H. Y. Kwak, and J. H. Kim, Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane, Chem. Eng. J., 168, 775-783 (2011). https://doi.org/10.1016/j.cej.2010.11.045
  6. O. A. Bereketidou and M. A. Goula, Biogas reforming for syngas production over nickel supported on ceria-alumina catalysts, Catal. Today, 195, 93-100 (2012). https://doi.org/10.1016/j.cattod.2012.07.006
  7. X. Zhao, B. Joseph, J. Kuhn, and S. Ozcan, Review Biogas Reforming to Syngas: A Review, iScience, 23, 101082 (2020).
  8. S. Jung, J. Lee, D. H. Moon, K. H. Kim, and E. E. Kwon, Upgrading biogas into syngas through dry reforming, Renew. Sustain. Energy Rev., 143, 110949 (2021).
  9. N. D. Charisiou, L. Tzounis, V. Sebastian, S. J. Hinder, M. A. Baker, K. Polychronopoulou, and M. A. Goula, Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts during the biogas reforming reaction, Appl. Surf. Sci., 474, 42-56 (2019). https://doi.org/10.1016/j.apsusc.2018.05.177
  10. G. Eigenberger and W. Ruppel, Catalytic fixed-bed reactors, Ullmann's Encyclopedia of Industrial Chemistry, 2th ed., 48-51, Wiley, Ludwigshafen, Germany (2012).
  11. I. Graf, A. K. Ruhl, and B. Kraushaar-Czarnetzki, Experimental study of heat transport in catalytic sponge packings by monitoring spatial temperature profiles in a cooled-wall reactor, Chem. Eng. J., 244, 234-242 (2014). https://doi.org/10.1016/j.cej.2014.01.060
  12. H. Freund, J. Bauer, T. Zeiser, and G. Emig, Detailed simulation of transport processes in fixed-beds, Ind. Eng. Chem. Res., 44, 6423-6434 (2005). https://doi.org/10.1021/ie0489453
  13. A. G. Dixon, Heat transfer in fixed beds at very low (<4) tube-to-particle diameter ratio, Ind. Eng. Chem. Res., 36, 3053-3064 (1997). https://doi.org/10.1021/ie9605950
  14. M. Usman, W. M. A. Wan Daud, and H. F. Abbas, Dry reforming of methane: Influence of process parameters - A review, Renew. Sustain. Energy Rev., 45, 710-744 (2015). https://doi.org/10.1016/j.rser.2015.02.026
  15. L. Dehimi, Y. Benguerba, M. Virginie, and H. Hijazi, Microkinetic modelling of methane dry reforming over Ni/Al2O3 catalyst, Int. J. Hydrogen Energy, 42, 18930-18940 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.231
  16. Y. Benguerba, M. Virginie, C. Dumas, and B. Ernst, Methane dry reforming over Ni-Co/Al2O3: Kinetic modelling in a catalytic fixed-bed reactor, Int. J. Chem. React. Eng., 15, 20160170 (2017).
  17. L. Tillmann, J. Schulwitz, A. van Veen, and M. Muhler, Dry reforming of methane at high pressure in a fixed-bed reactor with axial temperature profile determination, Catal. Lett., 148, 2256-2262 (2018). https://doi.org/10.1007/s10562-018-2453-x
  18. N. Jurtz, M. Kraume, and G. D. Wehinger, Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD), Rev. Chem. Eng., 35, 139-190 (2019). https://doi.org/10.1515/revce-2017-0059
  19. A. G. Dixon, and B. Partopour, Computational fluid dynamics for fixed bed reactor design, Annu. Rev. Chem. Biomol. Eng., 11, 109-130 (2020). https://doi.org/10.1146/annurev-chembioeng-092319-075328
  20. H. Silva, M. G. Nielsen, E. M. Fiordaliso, C. D. Damsgaard, C. Gundlach, T. Kasama, I. B. Chorkendorff, and D. Chakraborty, Synthesis and characterization of Fe-Ni/χ-Al2O3 egg-shell catalyst for H2 generation by ammonia decomposition, Appl. Catal. A Gen., 505, 548-556 (2015). https://doi.org/10.1016/j.apcata.2015.07.016
  21. V. Russo, L. Mastroianni, R. Tesser, T. Salmi, and M. Di Serio, Intraparticle modeling of non-uniform active phase distribution catalyst, ChemEngineering, 4, 1-15 (2020).
  22. J. M. Badano, C. Betti, I. Rintoul, J. Vich-Berlanga, E. Cagnola, G. Torres, C. Vera, J. Yori, and M. Quiroga, New composite materials as support for selective hydrogenation; Egg-shell catalysts, Appl. Catal. A Gen., 390, 166-174 (2010). https://doi.org/10.1016/j.apcata.2010.10.008
  23. Y. Kim, E. Cho, and C. H. Ko, Preparation of Ni-based egg-shell-type catalyst on cylinder-shaped alumina pellets and its application for hydrogen production via steam methane reforming, Int. J. Hydrogen Energy, 5314-5323 (2019).
  24. K. M. Kang, H. W. Kim, I. W. Shim, and H. Y. Kwak, Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane, Fuel Process. Technol., 92, 1236-1243 (2011). https://doi.org/10.1016/j.fuproc.2011.02.007
  25. K. M. Kang, I. W. Shim, and H. Y. Kwak, Mixed and autothermal reforming of methane with supported Ni catalysts with a core/shell structure, Fuel Process. Technol., 93, 105-114 (2012). https://doi.org/10.1016/j.fuproc.2011.09.022
  26. H. W. Kim, K. M. Kang, H. Y. Kwak, and J. H. Kim, Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane, Chem. Eng. J., 168, 775-783 (2011). https://doi.org/10.1016/j.cej.2010.11.045
  27. X. Yang, S. Wang, K. Zhang, and Y. He, Evaluation of coke deposition in catalyst particles using particle-resolved CFD model, Chem. Eng. Sci., 229, 116122 (2021).
  28. G. D. Wehinger, T. Eppinger, M. Kraume, Detailed numerical simulations of catalytic fixed-bed reactors: Heterogeneous dry reforming of methane, Chem. Eng. Sci., 122, 197-209 (2015). https://doi.org/10.1016/j.ces.2014.09.007
  29. A. G. Dixon, M. E. Taskin, M. Nijemeisland, and E. H. Stitt, CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field, Ind. Eng. Chem. Res., 49, 9012-9025 (2010). https://doi.org/10.1021/ie100298q
  30. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., 612-657, John Wiley & Sons, New York, USA (1960).
  31. M. Kuroki, S. Ookawara, K. Ogawa, A high-fidelity CFD model of methane steam reforming in a packed bed reactor, J. Chem. Eng. Jpn., 42, 73-78 (2009).
  32. A. G. Dixon, J. Boudreau, A. Rocheleau, A. Troupel, M. E. Taskin, M. Nijemeisland, and E. H. Stitt, Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming, Ind. Eng. Chem. Res., 51, 15839-15854 (2012). https://doi.org/10.1021/ie202694m
  33. J.-W. Snoeck, G .F. Froment, M. Fowles, Filamentous carbon formation and gasification: Thermodynamics, driving force, nucleation, and steady-state growth, Ind. Eng. Chem., 169, 240-249 (1997).
  34. J. W. Snoeck, G. F. Froment, M. Fowles, Steam/CO2 reforming of methane. Carbon filament formation by the Boudouard reaction and gasification by CO2, by H2, and by steam: Kinetic study, Ind. Eng. Chem. Res., 41, 4252-4265 (2002). https://doi.org/10.1021/ie010666h
  35. J. Zhang, H. Wang, and A. K. Dalai, Kinetic studies of carbon dioxide reforming of methane over Ni-Co/Al-Mg-O bimetallic catalyst, Ind. Eng. Chem. Res., 48, 677-684 (2009). https://doi.org/10.1021/ie801078p
  36. J. T. Richardson and S. A. Paripatyadar, Carbon dioxide reforming of methane with supported rhodium, Catalysis, 61, 293-309 (1990). https://doi.org/10.1016/S0166-9834(00)82152-1
  37. R. Schwiedernoch, S. Tischer, C. Correa, and O. Deutschmann, Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic monolith, Chem. Eng. Sci., 58, 633-642 (2003). https://doi.org/10.1016/S0009-2509(02)00589-4
  38. R. M. Mostafizur, M. G. Rasul, M. N. Nabi, Effect of surfactant on stability, thermal conductivity, and viscosity of aluminium oxide-methanol nanofluids for heat transfer applications, Therm. Sci. Eng. Prog., 31, 101302 (2022).
  39. M. Lacroix, P. Nguyen, D. Schweich, C. Pham Huu, S. Savin-Poncet, and D. Edouard, Pressure drop measurements and modeling on SiC foams, Chem. Eng. Sci., 62, 3259-3267(2007). https://doi.org/10.1016/j.ces.2007.03.027