Acknowledgement
This study was financially supported by Chonnam National University (Grant number: 2021-2189).
References
- M. Mikkelsen, M. Jorgensen, and F. C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci., 3, 43-81 (2010). https://doi.org/10.1039/B912904A
- C. McGladeand and P. Ekins, The geographical distribution of fossil fuels unused when limiting global warming to 2 ℃, Nature, 517, 187-190 (2015). https://doi.org/10.1038/nature14016
- R. Yukesh Kannah, S. Kavitha, Preethi, O. Parthiba Karthikeyan, G. Kumar, N. V. Dai-Viet, and J. Rajesh Banu, Techno-economic assessment of various hydrogen production methods - A review, Bioresour. Technol., 319, 124175 (2021).
- C. M. Kalamaras and A. M. Efstathiou, Hydrogen production technologies: Current state and future developments, Conference Papers in Energy, 2013, 1-9 (2013).
- H. W. Kim, K. M. Kang, H. Y. Kwak, and J. H. Kim, Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane, Chem. Eng. J., 168, 775-783 (2011). https://doi.org/10.1016/j.cej.2010.11.045
- O. A. Bereketidou and M. A. Goula, Biogas reforming for syngas production over nickel supported on ceria-alumina catalysts, Catal. Today, 195, 93-100 (2012). https://doi.org/10.1016/j.cattod.2012.07.006
- X. Zhao, B. Joseph, J. Kuhn, and S. Ozcan, Review Biogas Reforming to Syngas: A Review, iScience, 23, 101082 (2020).
- S. Jung, J. Lee, D. H. Moon, K. H. Kim, and E. E. Kwon, Upgrading biogas into syngas through dry reforming, Renew. Sustain. Energy Rev., 143, 110949 (2021).
- N. D. Charisiou, L. Tzounis, V. Sebastian, S. J. Hinder, M. A. Baker, K. Polychronopoulou, and M. A. Goula, Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts during the biogas reforming reaction, Appl. Surf. Sci., 474, 42-56 (2019). https://doi.org/10.1016/j.apsusc.2018.05.177
- G. Eigenberger and W. Ruppel, Catalytic fixed-bed reactors, Ullmann's Encyclopedia of Industrial Chemistry, 2th ed., 48-51, Wiley, Ludwigshafen, Germany (2012).
- I. Graf, A. K. Ruhl, and B. Kraushaar-Czarnetzki, Experimental study of heat transport in catalytic sponge packings by monitoring spatial temperature profiles in a cooled-wall reactor, Chem. Eng. J., 244, 234-242 (2014). https://doi.org/10.1016/j.cej.2014.01.060
- H. Freund, J. Bauer, T. Zeiser, and G. Emig, Detailed simulation of transport processes in fixed-beds, Ind. Eng. Chem. Res., 44, 6423-6434 (2005). https://doi.org/10.1021/ie0489453
- A. G. Dixon, Heat transfer in fixed beds at very low (<4) tube-to-particle diameter ratio, Ind. Eng. Chem. Res., 36, 3053-3064 (1997). https://doi.org/10.1021/ie9605950
- M. Usman, W. M. A. Wan Daud, and H. F. Abbas, Dry reforming of methane: Influence of process parameters - A review, Renew. Sustain. Energy Rev., 45, 710-744 (2015). https://doi.org/10.1016/j.rser.2015.02.026
- L. Dehimi, Y. Benguerba, M. Virginie, and H. Hijazi, Microkinetic modelling of methane dry reforming over Ni/Al2O3 catalyst, Int. J. Hydrogen Energy, 42, 18930-18940 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.231
- Y. Benguerba, M. Virginie, C. Dumas, and B. Ernst, Methane dry reforming over Ni-Co/Al2O3: Kinetic modelling in a catalytic fixed-bed reactor, Int. J. Chem. React. Eng., 15, 20160170 (2017).
- L. Tillmann, J. Schulwitz, A. van Veen, and M. Muhler, Dry reforming of methane at high pressure in a fixed-bed reactor with axial temperature profile determination, Catal. Lett., 148, 2256-2262 (2018). https://doi.org/10.1007/s10562-018-2453-x
- N. Jurtz, M. Kraume, and G. D. Wehinger, Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD), Rev. Chem. Eng., 35, 139-190 (2019). https://doi.org/10.1515/revce-2017-0059
- A. G. Dixon, and B. Partopour, Computational fluid dynamics for fixed bed reactor design, Annu. Rev. Chem. Biomol. Eng., 11, 109-130 (2020). https://doi.org/10.1146/annurev-chembioeng-092319-075328
- H. Silva, M. G. Nielsen, E. M. Fiordaliso, C. D. Damsgaard, C. Gundlach, T. Kasama, I. B. Chorkendorff, and D. Chakraborty, Synthesis and characterization of Fe-Ni/χ-Al2O3 egg-shell catalyst for H2 generation by ammonia decomposition, Appl. Catal. A Gen., 505, 548-556 (2015). https://doi.org/10.1016/j.apcata.2015.07.016
- V. Russo, L. Mastroianni, R. Tesser, T. Salmi, and M. Di Serio, Intraparticle modeling of non-uniform active phase distribution catalyst, ChemEngineering, 4, 1-15 (2020).
- J. M. Badano, C. Betti, I. Rintoul, J. Vich-Berlanga, E. Cagnola, G. Torres, C. Vera, J. Yori, and M. Quiroga, New composite materials as support for selective hydrogenation; Egg-shell catalysts, Appl. Catal. A Gen., 390, 166-174 (2010). https://doi.org/10.1016/j.apcata.2010.10.008
- Y. Kim, E. Cho, and C. H. Ko, Preparation of Ni-based egg-shell-type catalyst on cylinder-shaped alumina pellets and its application for hydrogen production via steam methane reforming, Int. J. Hydrogen Energy, 5314-5323 (2019).
- K. M. Kang, H. W. Kim, I. W. Shim, and H. Y. Kwak, Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane, Fuel Process. Technol., 92, 1236-1243 (2011). https://doi.org/10.1016/j.fuproc.2011.02.007
- K. M. Kang, I. W. Shim, and H. Y. Kwak, Mixed and autothermal reforming of methane with supported Ni catalysts with a core/shell structure, Fuel Process. Technol., 93, 105-114 (2012). https://doi.org/10.1016/j.fuproc.2011.09.022
- H. W. Kim, K. M. Kang, H. Y. Kwak, and J. H. Kim, Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane, Chem. Eng. J., 168, 775-783 (2011). https://doi.org/10.1016/j.cej.2010.11.045
- X. Yang, S. Wang, K. Zhang, and Y. He, Evaluation of coke deposition in catalyst particles using particle-resolved CFD model, Chem. Eng. Sci., 229, 116122 (2021).
- G. D. Wehinger, T. Eppinger, M. Kraume, Detailed numerical simulations of catalytic fixed-bed reactors: Heterogeneous dry reforming of methane, Chem. Eng. Sci., 122, 197-209 (2015). https://doi.org/10.1016/j.ces.2014.09.007
- A. G. Dixon, M. E. Taskin, M. Nijemeisland, and E. H. Stitt, CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field, Ind. Eng. Chem. Res., 49, 9012-9025 (2010). https://doi.org/10.1021/ie100298q
- R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., 612-657, John Wiley & Sons, New York, USA (1960).
- M. Kuroki, S. Ookawara, K. Ogawa, A high-fidelity CFD model of methane steam reforming in a packed bed reactor, J. Chem. Eng. Jpn., 42, 73-78 (2009).
- A. G. Dixon, J. Boudreau, A. Rocheleau, A. Troupel, M. E. Taskin, M. Nijemeisland, and E. H. Stitt, Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming, Ind. Eng. Chem. Res., 51, 15839-15854 (2012). https://doi.org/10.1021/ie202694m
- J.-W. Snoeck, G .F. Froment, M. Fowles, Filamentous carbon formation and gasification: Thermodynamics, driving force, nucleation, and steady-state growth, Ind. Eng. Chem., 169, 240-249 (1997).
- J. W. Snoeck, G. F. Froment, M. Fowles, Steam/CO2 reforming of methane. Carbon filament formation by the Boudouard reaction and gasification by CO2, by H2, and by steam: Kinetic study, Ind. Eng. Chem. Res., 41, 4252-4265 (2002). https://doi.org/10.1021/ie010666h
- J. Zhang, H. Wang, and A. K. Dalai, Kinetic studies of carbon dioxide reforming of methane over Ni-Co/Al-Mg-O bimetallic catalyst, Ind. Eng. Chem. Res., 48, 677-684 (2009). https://doi.org/10.1021/ie801078p
- J. T. Richardson and S. A. Paripatyadar, Carbon dioxide reforming of methane with supported rhodium, Catalysis, 61, 293-309 (1990). https://doi.org/10.1016/S0166-9834(00)82152-1
- R. Schwiedernoch, S. Tischer, C. Correa, and O. Deutschmann, Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic monolith, Chem. Eng. Sci., 58, 633-642 (2003). https://doi.org/10.1016/S0009-2509(02)00589-4
- R. M. Mostafizur, M. G. Rasul, M. N. Nabi, Effect of surfactant on stability, thermal conductivity, and viscosity of aluminium oxide-methanol nanofluids for heat transfer applications, Therm. Sci. Eng. Prog., 31, 101302 (2022).
- M. Lacroix, P. Nguyen, D. Schweich, C. Pham Huu, S. Savin-Poncet, and D. Edouard, Pressure drop measurements and modeling on SiC foams, Chem. Eng. Sci., 62, 3259-3267(2007). https://doi.org/10.1016/j.ces.2007.03.027