DOI QR코드

DOI QR Code

Prediction of Fire Risk and Fire Risk Grade of Five Wood Species by Chung's Equation-IX and Chung's Equation-XII

Chung's equation-IX 및 Chung's equation-XII에 의한 목재 5종의 화재위험성과 화재위험성등급 예측

  • JiSun You (Fire Research Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Yeong-Jin Chung (The National Safety Environment Institute)
  • 유지선 (한국건설기술연구원 화재안전연구소) ;
  • 정영진 (국가안전환경원)
  • Received : 2024.08.11
  • Accepted : 2024.09.03
  • Published : 2024.10.10

Abstract

Chung's equation-IX and Chung's equation-XII were utilized to predict the fire risk and evaluate fire risk ratings for five types of wood: white ash, hard maple, willow, fraxinus mandschurica, and sagent cherrys. The combustion tests were conducted using a cone calorimeter test method by ISO 5660-1 standards. The fire risk and fire risk rating (FRR) were compared with fire risk index-IX (FRI-IX) and fire risk index-XII (FRI-XII). The results yielded a fire performance index-XI (FPI-XI) ranging from 0.44 to 1.05 and a fire growth index-XI (FGI-XI) ranging from 0.89 to 3.11. Also, the fire risk index-XII (FRI-XII), indicated fire risk rating, exhibited an increasing order of sagent cherry (0.85): Grade A ≈ PMMA (1): Grade A ≈ white ash (1.22): Grade A ≈ hard maple (1.53): Grade A < willow (4.00): Grade C < faxinus mandschurica (7.07): Grade D. Additionally, the fire risk index-IX (FRI-IX) was PMMA (1): Grade A ≈ hard maple (2.28): Grade A ≈ sagent cherry (3.24): Grade A < white ash (5.73): Grade B < fraxinus mandschurica (10.29): Grade C ≪ willow (48.30): Grade G. In general, the willow and fraxinus mandschurica showed the highest fire risk. In conclusion, although the expression of the index is different as shown based on the criteria of FRI-IX and FRI-XII, predictions based on fire risk assessment of combustible materials showed a similar tendency.

5종의 목재에 대한 화재위험성의 예측 및 화재위험성 등급을 평가하기 위해 Chung's equation-IX과 Chung's equation-XII를 이용하였다. 시험편은 미국물푸레나무, 사탕단풍나무, 버드나무, 들메나무, 산벚나무를 선정하였다. 연소시험은 ISO 5660-1의 콘칼로리미터 시험법을 이용하였으며, 화재위험성지수-IX (FRI-IX)과 화재위험성지수-XII (FRI-XII)에 대한 화재위험성과 화재위험성등급(FRR)을 비교하였다. 그 결과 화재성능지수-XI (FPI-XI)와 화재성장지수-XI (FGI-XI)은 0.44~1.05와 0.89~3.11로 얻어졌다. 그리고 화재위험성지수-XII (FRI-XII)는 산벚나무(0.85): 등급 A ≈ PMMA(1): 등급 A ≈ 미국물푸레나무(1.22): 등급 A ≈ 사탕단풍나무(1.53): 등급 A < 버드나무(4.00): 등급 C < 들메나무(7.07): 등급 D 의 순으로 증가하였다. 또한 화재위험성지수-IX (FRI-IX)은 PMMA(1): 등급 A ≈ 사탕단풍나무(2.28): 등급 A ≈ 산벚나무(3.24): 등급 A < 미국물푸레나무(5.73): 등급 B < 들메나무(10.29): 등급 C ≪ 버드나무(48.30): 등급 G의 순으로 나타났다. 공통적으로 화재위험성은 버드나무와 들메나무가 가장 높게 나타났다. 결론적으로 FRI-IX와 FRI-XII의 기준을 근거로 하여 보여준 바와 같이 지수의 표현은 다르나, 가연성 재료의 화재위험성평가에 의한 예측은 유사한 경향성을 제시하였다.

Keywords

Acknowledgement

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant RS-2022-00156237).

References

  1. J. Buzek and E. Gyoori, Regulation (EU) No 305/2011 of the european parliament and of the council of 9 March 2011, Laying down harmonised conditions for the marketing of construction products and repealing council directive 89/106/EEC text with EEA relevance, OJEU, 5-43 (2011). 
  2. V. Babrauskas, Effective measurement techniques for heat, smoke and toxic fire gases, Fire Saf., 17, 13-26 (1991).  https://doi.org/10.1016/0379-7112(91)90010-V
  3. V. Babrauskas and S. J. Grayson, Heat Release in Fires, 210-217, Elsevier, London, UK (1992). 
  4. CBUF Report, Fire Safety of Upholstered Furniture - The Final Report on the CBUF Research Programme, B. Sundstrom, ed., EUR 16477 EN, European commission, measurements and testing report, Contract No.3478/1/0/196/11-BCR-DK(30), Interscience Communications, London, UK (1995). 
  5. M. M. Hirschler, Analysis of and potential correlations between fire tests for electrical cables, and how to use This information for fire hazard assessment, Fire Technol., 33, 291-315 (1997).  https://doi.org/10.1023/A:1015384109580
  6. M. Janssens, Fundamental Thermophysical Characteristics of Wood and Their Role in Enclosure Fire Growth, Doctoral's Thesis, University of Gent, Belgium (1991). 
  7. ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015). 
  8. M. A. Delichatsios, Smoke yields from turbulent buoyant jet flames, Fire Saf., 20, 299-311 (1993).  https://doi.org/10.1016/0379-7112(93)90052-R
  9. H. C. Tran, Experimental data on wood materials. In: V. Babrauskas and S. J. Grayson (eds.), Heat Release in Fires, 299-311, Elsevier Applied Science, New York, USA (1992). 
  10. M. Spearpoint and J. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux, Fire Saf., 36, 391-415 (2001).  https://doi.org/10.1016/S0379-7112(00)00055-2
  11. M. Delichatsios, B. Paroz, and A. Bhargava, Flammability properties for charring materials, Fire Saf. 38, 219-228 (2003).  https://doi.org/10.1016/S0379-7112(02)00080-2
  12. B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019).  https://doi.org/10.1016/j.carbon.2019.05.002
  13. L. Yan, Z. Xu and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Prog. Org. Coat., 135, 123-134 (2019).  https://doi.org/10.1016/j.porgcoat.2019.05.043
  14. Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018). 
  15. Y. J. Chung and E. Jin, Risk assessment of smoke generated during combustion for some wood, Appl. Chem. Eng., 33, 373-380 (2022). 
  16. Y. J. Chung and E. Jin, Rating evaluation of fire risk for combustible materials in case of fire, Appl. Chem. Eng., 32, 75-82 (2021). 
  17. Y. J. Chung and E. Jin, Rating of fire risk of combustible materials by the new Chung's Equation-IX, Appl. Chem. Eng., 34, 144-152 (2023). 
  18. Y. J. Chung and E. Jin, Fire risk index and grade evaluation of combustible materials by the new Chung's Equation-XII, Appl. Chem. Eng., 34, 388-396 (2023). 
  19. W. T. Simpson, Drying and control of moisture content and dimensional changes. In: Wood Handbook Wood as an Engineering Material, Forest Products Laboratory U.S.D.A, Forest Service, Madison, Wisconsin, USA, 1-12 (1999). 
  20. Y. J. Chung and E. Jin, Evaluation of fire risk rating of building materials by Chung's Equation-IX, Fire Sci. Eng., 37, 1-11 (2023). 
  21. Y. J. Chung and E. Jin, Assessment of the fire risk index and fire risk rating for five wood species according to Chung's Equation-XII, Fire Sci. Eng., 37, 116-125 (2023).  https://doi.org/10.7731/KIFSE.2f976c20
  22. Y. J. Chung and E. Jin, Assessment and prediction of fire risk grades of wood species in different storage environments, Fire Sci. Eng., 36, 83-92 (2022). 
  23. J. G. Quintire, Cengage learning, Principles of Fire Behavior, Delmar Publishers, New York, USA (1998). 
  24. J. D. Dehaan, Kirk's Fire Investigation, 5th ed., 84-112, Pearson, London, England (2002). 
  25. M. M. Hirschler, Use of heat release rate to predict whether individual furnishings would cause self propagating fires, Fire Saf., 32, 273-296 (1999).  https://doi.org/10.1016/S0379-7112(98)00037-X
  26. M. M. Hirschler, Heat release testing of consumer products, J. ASTM Int., 6, 1-25 (2009).  https://doi.org/10.1520/JAI102258
  27. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability, Thermal Characterization of Polymeric Materials, Academic Press, New York, USA (1981). 
  28. V. Babrauskas, Development of the cone calorimeter - A benchscale, heat release rate apparatus based on oxygen consumption, Fire Mater., 8, 81-95 (1984).  https://doi.org/10.1002/fam.810080206
  29. Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in korea, J. Ind. Eng. Chem., 16, 15-19 (2010).  https://doi.org/10.1016/j.jiec.2010.01.031
  30. B. Schartel and T. R. Hull, Development of fire-retarded materials-Interpretation of cone calorimeter data, Fire Mater., 31, 327-354 (2007).  https://doi.org/10.1002/fam.949
  31. M. Spearpoint and J. Quintiere, Predicting the piloted Ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux, Fire Saf. J., 36, 391-415 (2001).  https://doi.org/10.1016/S0379-7112(00)00055-2