Acknowledgement
This research was supported by Changwon National University in 2023~2024.
References
- D. Andrew, R. Mallick, H. A. Garcia, and P. Keikhaei Dehdez, Energy harvesting from pavements. In: K. Gopalakrishnan, W. J. Steyn, and J. Harvey (eds.). Climate Change, Energy, Sustainability and Pavements, 481-505, Springer, Berlin/Heidelberg, Germany (2014).
- V. Pecunia, S. R. Silva, J. Phillips, E. Artegiani, A. Romeo, H. Shim, J. Park, J. Kim, J. S. Yun, G. Welch, B. Larson, M. Creran, A. Laventure, K. Sasitharan, N. Flores-Diaz, M. Freitag, J. Xu, T. Brown, B. Li, and A. Joshi, Roadmap on energy harvesting materials, J. Phys. Mater., 6, 042501 (2023).
- G. Liu, T. Chen, J. Xu, and K. Wang, Blue energy harvesting on nanostructured carbon materials, J. Mater. Chem. A, 6, 18357-18377 (2018). https://doi.org/10.1039/C8TA07125J
- A. Berbille, X. Li, Y. Su, S. Li, X. Zhao, L. Zhu, and Z. L. Wang, Mechanism for generating H2O2 at water-solid interface by contact-electrification, Adv. Mater., 35, 2304387 (2023).
- W. Kim, D. Kim, I. Tcho, J. Kim, M. Kim, and Y. Choi, Triboelectric nanogenerator: Structure, mechanism, and applications, ACS Nano, 15, 258-287 (2021). https://doi.org/10.1021/acsnano.0c09803
- T. Zhao, M. Xu, X. Xiao, Y. Ma, Z. Li, and Z. L. Wang, Recent progress in blue energy harvesting for powering distributed sensors in ocean, Nano Energy, 88, 106199 (2021).
- B. Baytekin, H. T. Baytekin, and B. A. Grzybowski, What really drives chemical reactions on contact charged surfaces?, J. Am. Chem. Soc., 134, 7223-7226 (2012). https://doi.org/10.1021/ja300925h
- H. T. Baytekin, B. Baytekin, S. Huda, Z. Yavuz, and B. A. Grzybowski, Mechanochemical activation and patterning of an adhesive surface toward nanoparticle deposition, J. Am. Chem. Soc., 137, 1726-1729 (2015). https://doi.org/10.1021/ja507983x
- C. Yun, S. Lee, J. Ryu, K. Park, J. Jang, J. Kwak, and S. Hwang, Can static electricity on a conductor drive a redox reaction: Contact electrification of au by polydimethylsiloxane, charge inversion in water, and redox reaction, J. Am. Chem. Soc., 140, 14687-14695 (2018). https://doi.org/10.1021/jacs.8b07297
- H. Qin, L. Xu, F. Zhan, and Z. L. Wang, Electron transfer induced contact-electrification at oil and oleophobic dielectric interface, Nano Energy, 116, 108762 (2023).
- S. Lin, X. Chen, and Z. L. Wang, Contact electrification at the liquid-solid interface, Chem. Rev., 122, 5209-5232 (2022). https://doi.org/10.1021/acs.chemrev.1c00176
- C. Yun, T. D. Dinh, and S. Hwang, Chemical electrification at solid/liquid/air interface by surface dipole of self-assembled monolayer and harvesting energy of moving water, J. Colloid Interface Sci., 615, 59-68 (2022). https://doi.org/10.1016/j.jcis.2022.01.114
- J. S. Eo, J. Shin, S. Yang, T. Jeon, J. Lee, S. Choi, C. Lee, and G. Wang, Tailoring the interfacial band offset by the molecular dipole orientation for a molecular heterojunction selector, Adv. Sci., 8, 2101390 (2021).
- H. J. Lee, A. C. Jamison, and T. R. Lee, Surface dipoles: A growing body of evidence supports their impact and importance, Acc. Chem. Res., 48, 3007-3015 (2015). https://doi.org/10.1021/acs.accounts.5b00307
- A. Truyens, J. Vekeman, and F. Tielens, A subtle balance between in- terchain interactions and surface reconstruction at the origin of the alkylthiol/Au(111) self-assembled monolayer geometry, Surf. Sci., 696, 121597 (2020).
- D. Barriet and T. R. Lee, Fluorinated self-assembled monolayers: composition, structure and interfacial properties, Curr. Opin. Colloid Interface Sci., 8, 236-242 (2003). https://doi.org/10.1016/S1359-0294(03)00054-2