DOI QR코드

DOI QR Code

Effect of Modified Electrode on Energy Harvesting Based on Contact Electrification

  • Junmin Lim (Department of Chemistry, Changwon National University) ;
  • Jeongcheol Shin (Department of Chemistry, Duksung Women's University) ;
  • Changsuk Yun (Department of Chemistry, Changwon National University)
  • Received : 2024.08.26
  • Accepted : 2024.09.09
  • Published : 2024.10.10

Abstract

The technology of harvesting energy wasted in daily life is becoming increasingly important for sustainable energy production and climate change. In this study, we investigated an electrochemical energy harvesting system using blue energy generated by the movement of electrodes. We observed that energy could be harvested based on the electrification phenomenon that occurs when an electrode comes into contact with an electrolyte, particularly when the electrode is modified with a self-as-sembled monolayer (SAM) containing the fluorocarbons. The static charges, which are generated by electrification based on the energy level difference between the electrode and the electrolyte, could be transferred to an external circuit. Additionally, we discovered that structural features of SAM molecules are related to the efficiency of energy harvesting, including the number of fluorocarbons. This system successfully powered an LED, proving the practicality of electrochemical harvesting using blue energy. The results suggest the potential for developing more efficient and high-output energy harvesting systems through the application of various SAM molecules.

Keywords

Acknowledgement

This research was supported by Changwon National University in 2023~2024.

References

  1. D. Andrew, R. Mallick, H. A. Garcia, and P. Keikhaei Dehdez, Energy harvesting from pavements. In: K. Gopalakrishnan, W. J. Steyn, and J. Harvey (eds.). Climate Change, Energy, Sustainability and Pavements, 481-505, Springer, Berlin/Heidelberg, Germany (2014).
  2. V. Pecunia, S. R. Silva, J. Phillips, E. Artegiani, A. Romeo, H. Shim, J. Park, J. Kim, J. S. Yun, G. Welch, B. Larson, M. Creran, A. Laventure, K. Sasitharan, N. Flores-Diaz, M. Freitag, J. Xu, T. Brown, B. Li, and A. Joshi, Roadmap on energy harvesting materials, J. Phys. Mater., 6, 042501 (2023).
  3. G. Liu, T. Chen, J. Xu, and K. Wang, Blue energy harvesting on nanostructured carbon materials, J. Mater. Chem. A, 6, 18357-18377 (2018). https://doi.org/10.1039/C8TA07125J
  4. A. Berbille, X. Li, Y. Su, S. Li, X. Zhao, L. Zhu, and Z. L. Wang, Mechanism for generating H2O2 at water-solid interface by contact-electrification, Adv. Mater., 35, 2304387 (2023).
  5. W. Kim, D. Kim, I. Tcho, J. Kim, M. Kim, and Y. Choi, Triboelectric nanogenerator: Structure, mechanism, and applications, ACS Nano, 15, 258-287 (2021). https://doi.org/10.1021/acsnano.0c09803
  6. T. Zhao, M. Xu, X. Xiao, Y. Ma, Z. Li, and Z. L. Wang, Recent progress in blue energy harvesting for powering distributed sensors in ocean, Nano Energy, 88, 106199 (2021).
  7. B. Baytekin, H. T. Baytekin, and B. A. Grzybowski, What really drives chemical reactions on contact charged surfaces?, J. Am. Chem. Soc., 134, 7223-7226 (2012). https://doi.org/10.1021/ja300925h
  8. H. T. Baytekin, B. Baytekin, S. Huda, Z. Yavuz, and B. A. Grzybowski, Mechanochemical activation and patterning of an adhesive surface toward nanoparticle deposition, J. Am. Chem. Soc., 137, 1726-1729 (2015). https://doi.org/10.1021/ja507983x
  9. C. Yun, S. Lee, J. Ryu, K. Park, J. Jang, J. Kwak, and S. Hwang, Can static electricity on a conductor drive a redox reaction: Contact electrification of au by polydimethylsiloxane, charge inversion in water, and redox reaction, J. Am. Chem. Soc., 140, 14687-14695 (2018). https://doi.org/10.1021/jacs.8b07297
  10. H. Qin, L. Xu, F. Zhan, and Z. L. Wang, Electron transfer induced contact-electrification at oil and oleophobic dielectric interface, Nano Energy, 116, 108762 (2023).
  11. S. Lin, X. Chen, and Z. L. Wang, Contact electrification at the liquid-solid interface, Chem. Rev., 122, 5209-5232 (2022). https://doi.org/10.1021/acs.chemrev.1c00176
  12. C. Yun, T. D. Dinh, and S. Hwang, Chemical electrification at solid/liquid/air interface by surface dipole of self-assembled monolayer and harvesting energy of moving water, J. Colloid Interface Sci., 615, 59-68 (2022). https://doi.org/10.1016/j.jcis.2022.01.114
  13. J. S. Eo, J. Shin, S. Yang, T. Jeon, J. Lee, S. Choi, C. Lee, and G. Wang, Tailoring the interfacial band offset by the molecular dipole orientation for a molecular heterojunction selector, Adv. Sci., 8, 2101390 (2021).
  14. H. J. Lee, A. C. Jamison, and T. R. Lee, Surface dipoles: A growing body of evidence supports their impact and importance, Acc. Chem. Res., 48, 3007-3015 (2015). https://doi.org/10.1021/acs.accounts.5b00307
  15. A. Truyens, J. Vekeman, and F. Tielens, A subtle balance between in- terchain interactions and surface reconstruction at the origin of the alkylthiol/Au(111) self-assembled monolayer geometry, Surf. Sci., 696, 121597 (2020).
  16. D. Barriet and T. R. Lee, Fluorinated self-assembled monolayers: composition, structure and interfacial properties, Curr. Opin. Colloid Interface Sci., 8, 236-242 (2003). https://doi.org/10.1016/S1359-0294(03)00054-2