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Abstract

We focus on open-domain question-answering tasks that involve a chain-of-

reasoning, which are primarily implemented using large language models.

With an emphasis on cost-effectiveness, we designed EffiChainQA, an architec-

ture centered on the use of small language models. We employed a retrieval-

based language model to address the limitations of large language models,

such as the hallucination issue and the lack of updated knowledge. To

enhance reasoning capabilities, we introduced a question decomposer that

leverages a generative language model and serves as a key component in the

chain-of-reasoning process. To generate training data for our question decom-

poser, we leveraged ChatGPT, which is known for its data augmentation

ability. Comprehensive experiments were conducted using the HotpotQA data-

set. Our method outperformed several established approaches, including the

Chain-of-Thoughts approach, which is based on large language models. More-

over, our results are on par with those of state-of-the-art Retrieve-then-Read

methods that utilize large language models.

KEYWORD S
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question decomposition

1 | INTRODUCTION

Following the recent emergence of large-scale language
models (LMs), methodologies for complex question
answering (QA) have improved. What was once scarcely
attempted-the chain-of-reasoning–has now become a
reality, yielding significant performance improvements as
evidenced by various methods [1]. Although large lan-
guage models (LLMs) have powerful capabilities, they
also present inherent challenges. The first challenge
relates to hallucinations. There have been instances

where the model derived false inferences during the
reasoning process instead of relying on factual data [1, 2].
Furthermore, LLMs face the challenge of becoming out-
dated quickly; once trained, they fail to incorporate the
new knowledge that emerges subsequently. Retrieval-
based LMs have been shown to effectively address
hallucinations and outdated information issues [3].
Because of these attributes, the Retrieve-then-Read pipe-
line has gained popularity among LLMs [4-6].

LLMs are also very expensive to operate based on their
incredibly high parameter count. For example, GPT-3
boasts 175 billion model parameters, whereas T5-base/
large models feature 220/770 million parameters.Jihyeon Roh and Minho Kim equally contributed to this work.
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Moreover, by taking into account the size ratio alone, an
approximate difference of 800x/250x exists. Finetuning
definitely helps the LLMs, but the effort alone causes
notable cost increases. On the other hand, small models
complemented by information retrieval and finetuning
methods have recently demonstrated comparable or supe-
rior performance results at much lower costs [7-9]. Syn-
thesizing the aforementioned viewpoints, retrieval-based,
small-sized LMs exhibited greater efficiency in addressing
problems than their large-scale counterparts while concur-
rently mitigating hallucinations and outdated knowledge
issues. We consider models with billions of parameters as
“large” and those with millions of parameters as “small.”

The objective of our study is to present a system with
efficient, small LMs to adequately handle question-
answering tasks that require open-domain exploration,
multihop searches, and chain-of-reasoning processes
while minimizing the reliance on large-scale counter-
parts. We employ retrieval-based LMs to attain a perfor-
mance level similar to that of LLMs. Furthermore, this
study analyzes the problem types appearing in complex
question sets and offers chain-of-reasoning pipelines tai-
lored to each specific type.

A challenging aspect of the proposed architectural
configuration is question decomposition. Although this
can be accomplished using generative LMs [10], prepar-
ing the required training data is difficult. As is commonly
understood, involving humans is the most effective
approach to acquiring high-quality data. However, one
drawback is the substantial cost associated with this
method. Recently, LLMs have shown their potential for
generating high-quality texts [11]. Consequently, we
employed the well-known LLM, ChatGPT, to generate
training data for our question decomposer.

During our experiments, we observed that the pro-
posed reasoning approach using small LMs outperformed
or closely matched those of methods reliant on high-cost
LLMs. We also conducted a series of experiments involv-
ing different reasoning pipelines to identify the essential
components that can enhance the effectiveness of the
proposed chain-of-reasoning pipelines. Our contributions
can be summarized as follows:

1. We introduced EffiChainQA, a new chain-of-reason-
ing framework for open-domain QA that leverages
efficient, small LMs instead of LLMs.

2. We implemented question decomposition, a crucial
component of chain-of-reasoning, using a training set
derived from a data augmentation based on LLMs.

3. In testing, our method outperformed some Chain-of-
Thoughts approaches [1, 12], which rely on LLMs, and
demonstrated performance comparable to the latest
Retrieve-then-Read techniques that also use LLMs.

2 | RELATED WORKS

2.1 | Retrieval-augmented LM

Retrieval-based LMs are essential for open-domain
QA. In particular, the Fusion-in-Decoder (FiD) model [13]
exhibits improved performance by selecting and integrat-
ing multiple retrieved documents. FiD has been investi-
gated in various follow-up studies due to its excellent
performance [14, 15]. In particular, the method [14]
(we refer to as EviQA) jointly trains two modules, one
that selects evidence from retrieved results and another
that generates answers. This approach improves perfor-
mance while providing explanations through evidence
selection. Numerous studies have been conducted on
retrieval-based LLMs [3, 16, 17] to address the hallucina-
tions and outdated issues associated with LLMs. In this
study, we applied the FiD and EviQA methods as the
answer generators in our chain-of-reasoning pipelines.

2.2 | Complex question decomposition

A complex question necessitates its division into simpler
sub-questions that are relatively easier to answer. For
question decomposition, there are established strategies
such as symbolic methods based on logical approaches
[18, 19], as well as methods that rely on learning models
using purely natural language text [10, 20, 21]. To train
a generative LM for question decomposition, a large
number of sets comprising original questions and their
decomposed sub-questions are needed. In previous stud-
ies, such paired sets were created either through massive
human effort [21, 22] or machine-generated approaches
using certain heuristics [10]. Recently, numerous studies
have been leaning towards using generative LMs to
augment training data [11, 23]. Moreover, LLMs have
been able to produce high-quality data that are more
time and cost-effective compared to human-generated
content [24]. In this paper, we utilize the dataset gener-
ated by LLM to train a question decomposer model
using a small LM.

2.3 | Chain-of-reasoning

Complex problems are often addressed by chaining the
reasoning across multiple steps. Methods based on LLMs
have recently attracted attention for this purpose. Starting
with the Chain-of-Thoughts (CoT) [1], subsequent inno-
vations have emerged. For instance, self-consistency
(SC) [12] introduced a technique for self-checking the
reasoning paths generated by LLMs, whereas ReAct [25]
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proposed an iterative method for redesigning action plans
and reasoning plans based on the outcomes of previous
actions. The Rewrite-Retrieve-Read methodology [5]
enhances the conventional Retrieve-then-Read paradigm
by integrating a query-rewriting module. This inclusion
facilitated dynamic and adaptive data retrieval based
on the output of the previous reader. In a related
advancement, Yu et al. [26] improved the results of LLM
by providing the retrieved results as an in-context demon-
stration of the subsequent reasoning process.

Recent studies proposed several methods for the
construction of reasoning chains by combining various
external tools [27-29]. When provided with definitive
inputs, utilizing an external tool that yields clear out-
comes can minimize uncertainties. This is especially
valuable compared with the case where processing solely
depends on LLMs, which occasionally exhibit hallucina-
tion issues. Notably, these methods offer the advantage of
generating explanations for their results. By contrast, Ma
et al. [30] introduced a method using small LMs to solve
a task by creating reasoning paths using core entities and
hyperlinks.

This study addresses the chain-of-reasoning. Our
objective is to establish a chain-of-reasoning pipeline that
predominantly uses small LMs, thus ensuring minimal
reliance on LLMs. Our proposed method can also be
viewed as a type of tool-based LM because we utilize dif-
ferent reasoning pipelines depending on the question type.

3 | METHOD

Figure 1 presents an overview of our reasoning pipeline.
The pipeline extends from the framework shown in
Figure 1A to that shown in Figure 1B. Figure 1B
illustrates EffiChainQA. Our pipeline consists of three
primary modules: reasoning-type classifier, question de-
composer, and RecomposeNet.

The first module, the reasoning-type classifier, serves
as a discriminator that determines the reasoning type
upon receiving a question to facilitate path planning. As
shown in Figure 1B, questions are categorized into
“bridge” and “comparison”. Based on the HotpotQA
dataset, we assume that complex questions fall

F I GURE 1 Overview of our proposed pipeline: (A) simple Retrieve-then-Read system using large language models (LLMs) and (B) our

extended Retrieve-then-Read framework with modularized reasoning components. In (B), we initiate the process by classifying the reasoning

types with the reasoning-type classifier. Then, the multihop questions are decomposed into more simpler sub-questions using the question

decomposer. Finally, RecomposeNet, using small LMs in Reader, integrates the sub-questions and sub-answers to generate final answers for

each distinct reasoning path. The symbol
L

represents the concatenation operator. Corresponding to the reasoning types, we adopt two

distinct reasoning paths: bridge and comparison.
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predominantly into these two categories. Although the
questions could be categorized more intricately, we
adhered to the types provided in dataset. The third
module has two distinct reasoning paths. Even with the
addition of new reasoning types for a question, this archi-
tecture remains applicable. For example, when introduc-
ing the “intersection” type, the classifier can be updated
accordingly followed by the addition of a new reasoning
path. A detailed classification methodology is presented
in Section 3.1.

The second module is the question decomposer, as
shown in Figure 2, which decomposes a question into
simpler sub-questions. Although this decomposition is
compatible with a range of LMs, we specifically leveraged
two models in our study: ONUS, which operates on a
small LM, and ChatGPT, which is a representative LLM.
The question decomposition method is described in detail
in Section 3.2.

The third module is RecomposeNet, in which different
reasoning paths are pursued, depending on the reasoning
type of the question. The decomposed questions (i.e., sub-
questions) and original question pair were used as inputs
for each reasoning path based on reasoning type, ulti-
mately leading to the derivation of the final answer.
Details of the RecomposeNet are provided in Section 3.3.

3.1 | Reasoning-type classifier

To generate final answers tailored to the reasoning types
of questions, our system adopts specific reasoning pro-
cesses. In the initial step, we implemented a module

dedicated to classifying question types. This module
accepts a question as input and yields reasoning type t as
the output, where t � {bridge, comparison}. The out-
comes of type classifications play a crucial role in the
third module and determine the direction of the reason-
ing paths.

For reasoning-type classification, we explored several
LMs, including nonfine-tuned LLMs (e.g., GPT-3.5 and
GPT-4) and a trainable BERT model [31]. For the LLMs,
we utilized an in-context learning approach via ChatGPT
to determine the types of questions. Four question-type
pairs were used as context examples, with two examples
each for the bridge and comparison types.

For the BERT, we fine-tuned the model using the
question-type pairs from the HotpotQA dataset.

3.2 | Question decomposer

3.2.1 | Question decomposition using LLMs

In Figure 2A, we utilize ChatGPT API (a variant of GPT-
3.5) to construct a question decomposition corpus using
an in-context learning approach (also known as few-shot
learning) [32]. This process entailed the presentation of
instructions along with several examples of prompts,
followed by a target question. Some examples were
manually crafted. We provided different in-context exam-
ples and instructions, depending on the reasoning type
(bridge or comparison). Based on this process, we
obtained a substantial number of question and decompo-
sition pairs. The decompositions derived in this study are
referred to as pseudo-decompositions. These serve either
as a training corpus for a smaller question decomposition
LM or a direct input to RecomposeNet.

3.2.2 | Question decomposition using
small LM

Unlike the ONUS approach [10], which extracts simple
sub-question examples from a Common Crawl, our
method emphasizes the autonomous generation of a data-
set without human intervention facilitated by the use of
LLMs. Consequently, we employed pseudo-decomposi-
tions generated by LLMs to train the ONUS, as depicted
in Figure 2B. The resulting model is referred to as “ONUS
+L”. The ONUS system adopted XLM [33] due to its
notable performance in both translation and decomposi-
tion, achieved using the back-translation technique. Dur-
ing inference, ONUS+L generates sub-questions given an
input question. These outputs then act as inputs for the
subsequent modules.

F I GURE 2 A complex question, denoted as Q, is broken down

into simpler questions (either sub-Qn or sub- ~Qn) via the question
decomposer, which can be based on either (A) (few-shot learner)

large language model (LLM) or (B) a (trainable) small language

model (LM). In (B), we use sub-Qn derived from the LLM as the

target for model training. Either sub-Qn or sub- ~Qn is used as the

input for the reasoning pipeline.
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3.3 | RecomposeNet for each
reasoning path

Building on the inherent characteristics of the different
question types, we designed RecomposeNet with distinct
reasoning paths for each type. Both bridge and compari-
son networks consistently incorporate the retriever and
reader models. The input and output components of
these networks encompass the original question, sub-
questions, sub-answers, retrieval results for the sub-ques-
tions, and retrieval results for the original question.
These are denoted as Q, sub-Qs, sub-As, Rsub-Qs, and RQ,
respectively. We represent the nth sub-question and its
answer as sub-Qn and sub-An, respectively.

In our experiments, we utilized the Contriever search
engine from ATLAS [7] for the retriever. This engine is
specifically fine-tuned for Natural Questions (NQ) [34]
and is denoted as Contriever–ATLAS–NQ. For the reader,
we employed either EviQA or FiD to generate answers
from the retrieved multiple documents.

This subsection details the method used to derive
answers for both bridge and comparison types.

3.3.1 | Reasoning path of bridge type

The bridge type has a predetermined order between the
decomposed sub-questions. To determine sub-A2, we typ-
ically need to address sub-A1. This process proceeds as
follows:

1) Retrieval for sub-Q1: Using Contriever–ATLAS–
NQ, we extracted 20 relevant paragraphs from the
external datastore that aligned closely with sub-Q1.

2) Generate answer for sub-Q1: We utilized EviQA
which was fine-tuned to the NQ dataset (referred to
as EviQA–NQ), as a reader. EviQA–NQ processes the
retrieved documents alongside sub-Q1 to produce
the corresponding answer (sub-A1).

3) Retrieval for sub-Q2: The sub-A1 plays a pivotal role
in addressing sub-Q2 and serves as a bridge between
them. Hence, we substitute this answer with a bridge
word in sub-Q2, denoted as sub-Q20 in Table 1. To
simplify this process, we can create the sub-Q20 by
concatenating sub-A1 and sub-Q2.

4) Generate final answer: The final reader acts as
the final answer generator. The input can include
either sub-Q20 or Q. Notably, by leveraging the
original question, our system adeptly addresses
those questions labeled as “bridge type” even if they
do not strictly fit the bridge-type definition, instead of
aligning more closely with single-hop or intersection
types.

For instance, the query “Kathleen Matthews holds
what political position in the Maryland Democratic
Party?” is more of a single-hop type than a bridge-type
question. To ensure system robustness, we structured the
input for the final reader by incorporating the retrieval
results from both Q and sub-Q20. Specifically, the input
comprises three primary components: [(Q or sub-Q20),
RQ, and Rsub-Q20], where RQ and Rsub-Q20 are the retrieval
results for Q and sub-Q20, respectively. Section 4.7.1 pre-
sents a detailed ablation study on this combination. We
employed either FiD or EviQA as the final readers, both
fine-tuned for HotpotQA.

3.3.2 | Reasoning path of comparison type

Unlike the bridge type, the comparison type does not
have a sequential relationship between its sub-Qs, and no
bridge substitute connects them. This path was designed
to independently search for and generate sub-As. The
details are as follows.

1) Retrieve and generate answers for sub-Q1 and
sub-Q2: Similar to the approach for the sub-Q1 of
bridge type, Contriever–ATLAS–NQ was applied as a
retriever, and EviQA–NQ was applied as an answer
generator. Each sub-question was used as an indepen-
dent input for the retriever and reader, ultimately
obtaining answers for each sub-question.

2) Generate final answer: To ensure a precise final
answer, Q was used as the input for the final reader.
While sub-Qs aid in discerning the final answer, their
answers contribute evidence rather than provide the
definitive answers themselves. This is illustrated in the
example in Table 2. Moreover, it is essential to include
context in the input. This context comprises a combi-
nation of augmented sub-As and the retrieval results
from the retriever. The augmented sub-As are con-
structed by concatenating the sub-As along with the
corresponding sub-Qs. Specifically, sub-A10 = [sub-

TABL E 1 Example of bridge-type question and its sub-

questions.

Q: Who was the biological father of the emperor who built the
Nemi ships?

sub-Q1: Who was the emperor that built the Nemi ships?

sub-Q2: Who was the biological father of that emperor?

sub-A1: Caligula

sub-Q20: Who was the biological father of Caligula?

Note: sub-Q20 is formed by replacing the bridge word in sub-Q2 with the

answer to sub-Q1 (i.e., sub-A1).
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Q1; sub-A1] and sub-A20 = [sub-Q2; sub-A2]. These
augmented sub-As are represented as sub-A0s = [sub-
A10; sub-A20]. The retrieval results are a combination
of RQ and Rsub-Qs. Thus, the full context is represented
as context = [sub-A0s; Rsub-Qs; RQ]. This configuration
is flexible and subject to adjustment. A detailed abla-
tion study exploring various combinations of these
components is presented in Section 4.7.2.

4 | EXPERIMENTS

4.1 | HotpotQA dataset

To evaluate our multistep reasoning method, we used Hot-
potQA, a renowned corpus that encompasses both multi-
hop QA and open-domain QA formats [35]. Questions
within the corpus were categorized into two reasoning
types: bridge and comparison. Specifically, the bridge types
accounts for approximately 80 %, whereas the comparison
type accounts for approximately 20 %, as shown in Table 3.

In our study, which targeted open-domain QA, we
assessed our system using the full Wiki settings of the
HotpotQA dataset. For this purpose, we used the
December 2021 Wikipedia dump as our primary knowl-
edge source. To structure this external knowledge, we
adopted the approach used in a previous study [7]. Each
document (article) was divided into sections, and sections
longer than 200 words were further divided. This process
yielded 37 M paragraphs, which were then converted into
dense passage vectors using Contriever.

4.2 | Data augmentation by ChatGPT

To train the small-question decomposer, ONUS+L, we
employed the ChatGPT-3.5-turbo application program-
ming interface (API) to generate the training corpus.

Each API call included few-shot, in-context learning
examples, each with instructions tailored to its corre-
sponding type, as listed in Table 4. We experimented with
one to three in-context examples, and the performance
was good when two or more examples were used.
Although providing three examples is likely to yield bet-
ter results, we opted for two, considering the trade-off
between API call costs and the quality of outcomes.

4.3 | Pipeline configuration

The composition of our reasoning pipelines is
represented as {<1st module method>–<2nd module
method>–<3rd module method>}, with examples pro-
vided in rows 10–14 of Table 5. The first module employs

TAB L E 2 Example of comparison-type question and its sub-

questions.

Q: Who was born first, Arthur Conan Doyle or Penelope
Lively?

sub-Q1: When was Arthur Conan Doyle born?

sub-Q2: When was Penelope Lively born?

sub-A1: 22 May 1859

sub-A2: 17 March 1933

final answer: Arthur Conan Doyle

Note: The answers to the sub-questions (i.e., sub-A1 and sub-A2) do not
align with the final answer.

TABL E 3 Data statistics for HotpotQA.

Bridge Comparison All

train 72 991 17 456 90 447

dev 5918 1487 7405

total 78 909 18 934 97 852

Note: Number of train/dev data for each question type are shown.

TABL E 4 Example instructions per reasoning type ([a] bridge

and [b] comparison) applied to ChatGPT for generating sub-

questions from a given multihop question.

(a) Bridge type

Divide a question into two sub-questions.

question: What government position was held by the woman who
portrayed Corliss Archer in the film Kiss and Tell?

sub-questions:

1) Which woman portrayed Corliss Archer in the film Kiss and
Tell?

2) What government position was held by the woman?

question: Who was the biological father of the emperor who built
the Nemi Ships?

sub-questions: {}

(b) Comparison type

Generate two complementary questions from a question.

question: Who is older, Annie Morton or Terry Richardson?

complementary questions:

1) How old is Annie Morton?

2) How old is Terry Richardson?

question: Who was born first, Arthur Conan Doyle or Penelope
Lively?

complementary questions:{}

Note: Owing to article space limitations, only a single example is provided
here.
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BERT, ChatGPT, or Given as reasoning-type classifiers.
Here, Given refers to the labels provided in the HotpotQA
corpus that were directly annotated by humans. The
second module employs ChatGPT (specifically, GPT-
3.5-turbo) or ONUS+L as the question decomposer.
In the third module, we used two distinct models:
UniG and SepG. UniG represents an answer generator
trained on an integrated corpus that includes both bridge
and comparison reasoning types and serves as a unified
answer-generator for both types. In contrast, SepG
employs separate answer generators trained individually
for each type. UniG utilizes the EviQA framework, which
is renowned for its superior performance compared with
the FiD model. However, owing to its considerably
higher training costs, the SepG model employs a more
cost-efficient FiD model.

4.4 | Overall performance

We compared the proposed method to several baseline
methods using the HotpotQA dataset. Table 5 lists the
performance of all baselines and our system based on
various configurations. The proposed techniques, espe-
cially OursBERT–ChatGPT–SepG and OursGiven–ChatGPT–SepG,
exhibited enhancements of more than 15- and 10-points
in EM performance compared with CoT-prompting and
SC, respectively. Additionally, the methods presented in

this study showcase state-of-the-art performance in the
context of Retrieve-then-Read algorithms, such as
Rewrite-Retrieve-Read and ReFeed. Notably, the remark-
able aspect lies in the superior or comparable perfor-
mances compared with the methods employing LLMs
throughout their entire process.

Our system encompasses up to three retrievers,
three generators (readers), a classifier, and a question
decomposition process. In comparison, the ReFeed [26]
method involves two generators and one retriever. While
Refeed involves fewer generators and retrievers than our
system, it requires more computational resources
overall, due to its multiple uses of ChatGPT. The key
factors affecting computation and execution times
include parameter size of the model and the length of
the decoder sequence. Our model excelled in efficiency,
with 250 times fewer parameters (Ours: 770M vs.
ReFeed: 175B) and a 256 times shorter decoder sequence
length (Ours: 16 vs. ReFeed: 4096). Given these substan-
tial differences, our method is expected to significantly
improve computational resource efficiency and reduce
execution time.

Furthermore, the pipeline that used BERT for type
prediction exhibited the same performance as the pipe-
line that utilized the Given state provided in the problem
set. OursBERT–ONUS+L–UniG method, which does not use
LLM, outperformed some of the algorithms that relied
solely on LLM.

Within the entire pipeline, the model utilizing the
LLM (ChatGPT) solely for question decomposition yields
a 10.06-point performance improvement compared with
the model that did not use the LLM at all (34.28 vs. 44.34
EM). This demonstrates the potential of improving the
question decomposer using smaller LMs.

4.5 | Results on varying pipeline
components

Table 6 presents the experimental comparisons based on
variations in the module compositions of the reasoning
pipeline. The overall performance (“all” columns in
Table 6) was calculated as the micro average of the
bridge- and comparison-type EMs.

Regarding the different types of classifiers, our fine-
tuned BERTbase outperformed both GPT-3.5 and GPT-4
and performed on par with the Given setting. Note that the
number of types predicted by GPT-3.5 varied significantly
from those of Given. This discrepancy can be attributed to
the subpar performance of type classifications, which affect
the overall performance. For the GPT-3.5–ChatGPT–UniG
system, approximately 800 noisy and complex questions
initially annotated as bridge type may have been

TAB L E 5 Performance of small and large LMs on the

HotpotQA (full wiki) dev dataset.

Base model (size) Method EM

- HopotQA-baseline [35] 24.68

T5 (770 M) EviQA [14] 22.82

ChatGPT (175 B) Rewrite–Retrieve–Read [5] 33.70

ChatGPT (175 B) ReFeed [26] 43.50

ChatGPT (175 B) ReFeed+CoT [26] 44.20

PaLM (540 B) Chain-of-Thoughts (CoT)
prompting [1]

28.90

PaLM (540 B) Self-Consistency (SC) [12] 33.80

PaLM (540 B) TooLearningFM [28] 35.50*

PaLM (540 B) ReAct + CoT-SC [25] 35.10

T5 (770 M) OursBERT–ONUS+L–UniG 34.28

OursBERT–ChatGPT–UniG 41.74

OursBERT–ChatGPT–SepG 44.34

OursGiven–ChatGPT–UniG 41.60

OursGiven–ChatGPT–SepG 44.34

Note: The best results among all experiments are highlighted in bold. The
star(*) symbol denotes results derived from a subset of 200 randomly
selected samples.
Abbreviation: LM, language model.
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misclassified by the GPT-3.5 classifier and transferred to
the comparison group. This misclassification could poten-
tially inflate the performance metrics for the bridge type
while adversely affecting those for the comparison type. As
a result, the overall performance of the system was
reflected in the second-worst EM score of 40.17. In con-
trast, the BERT–ChatGPT–SepG system, which nearly
accurately classified both bridge and comparison types,
attained the second-best performance in each category.
This level of accuracy contributed to it achieving the high-
est overall performance.

Regarding the different question decomposer,
ChatGPT outperformed ONUS+L. Regarding the final
reader, we observed that SepG performed better than
UniG. Especially, when training the SepG model solely
on the corpus of comparison-type questions, a perfor-
mance improvement of 13.11 points (from 52.39 to 65.50)
was observed. In contrast to the bridge type (from 38.89
to 39.02), a significant performance improvement was
achieved. Regarding the size of the training corpus, the
comparison type was approximately 1/4 that of the bridge
type. The same ratio was employed when training UniG,
which led to the speculation that the UniG model may
have been at a disadvantage in learning from the compar-
ison type because of this ratio. Overall, the “BERT–
ChatGPT–SepG” and “Given–ChatGPT–SepG” pipelines
exhibited the highest performance. EM performance
across different question reasoning types matched the
overall performance pattern.

4.6 | Reasoning-type classifier
performance

Table 7 presents the performance outcomes of the
different models in reasoning-type classifications.

This table provides empirical findings regarding
(1) the performance variation among different LLM
models, (2) the effect of the fine-tuned small LM,
and (3) a detailed breakdown of performance by
reasoning type.

Regarding (1), both GPT-3.5 and GPT-4 demonstrated
performances greater than 87% even though they are
few-shot models. We also confirmed that GPT-4 outper-
formed GPT-3.5 by roughly 9% in our tests. Regarding
(2), the performance of the fine-tuned BERT model was
approximately 2.7% better than that of the few-shot
LLMs. Despite its small size, significant performance
improvements were observed when the model was
trained using task-specific data. Regarding (3), GPT-4
performed better than GPT-3.5 for bridge-type questions.
However, for the comparison type, GPT-3.5 outperforms
GPT-4. Due to the relatively higher number of bridge-
type questions compared with comparison-type ques-
tions, enhancing the performance of bridge-type questions
can substantially contribute to overall performance
improvement. Finally, for both bridge- and comparison-
type questions, the Finetune-BERTbase model outper-
formed the LLMs.

TAB L E 6 Results from our pipelines combining various models.

Pipeline EM Number of questions

Type classifier Decomposer Reader bridge comparison all bridge comparison

Given ChatGPT UniG 38.89 52.39 41.60 5918 1487

Given ChatGPT SepG 39.02 65.50 44.34 5918 1487

GPT-4 ChatGPT UniG 38.82 53.24 41.74 5908 1497

GPT-3.5 ChatGPT UniG 39.11 42.57 40.17 5143 2262

BERT ONUS+L UniG 32.90 39.58 34.28 5879 1526

BERT ChatGPT UniG 38.86 52.82 41.74 5879 1526

BERT ChatGPT SepG 39.04 64.74 44.34 5879 1526

Note: We report exact match (EM) scores for the Hotpot dev dataset. The terms “bridge” and “comparison” denote the reasoning types associated with
questions. The term “all” signifies that all the samples in the dev set, including bridge and comparison types, were used for evaluation. The values in the

“Number of questions (bridge/comparison)” columns showcase the changes in dataset composition when different type classifiers were applied. The highest
value is marked in bold, and the second highest value is underlined.

TABL E 7 Classification accuracy for reasoning type of

questions in the HotpotQA dev set.

Accuracy (%)

Models Bridge Comparison All

OpenAI GPT-3.5 85.5 94.4 87.3

OpenAI GPT-4 97.4 90.3 96.0

Finetune-BERTbase 98.9 98.1 98.7

Note: The “all” column was calculated using micro average. Bold scores
indicate the best performances.
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4.7 | Ablation studies

Given that each type of reasoning pipeline contains
unique components, there is leads to a range of configu-
rations depending on the type. We describe additional
analyses focusing on specific components of the reason-
ing pipeline. The effects of removing or altering these
components were evaluated.

4.7.1 | Study for bridge-type configuration

Table 8 lists the performance impact outcomes when cer-
tain components were excluded or replaced in the final
answer generator. We conducted an experimental com-
parison to assess the effect of the two approaches. The
first involved solely using sub-Q20, whereas the second
approach utilized information from the original question
instead of sub-Q20. Ideally, in a bridge-type scenario, it
should be possible to determine the answer using only
sub-Q20.

However, relying solely on sub-Q20 resulted in lower
EM scores. To investigate the cause of this underperfor-
mance, we conducted a human evaluation to confirm
instances in which the original question did not fit the
bridge type. For instance, “Where did recording sessions
take place for the Michael Jackson hit Beat It?” is a single-
hop type, and “Who was the writer of These Boots Are Made
for Walkin’ and who died in 2007?” is an intersection type;
both of these are types that do not necessitate a bridge. In
HotpotQA, it was stated that 31% of the questions com-
prised intersection or single-hop types and not the bridge
type. Acknowledging the limitations of using sub-Q20 in
these instances, we opted for an alternative approach that
utilizes the original question (Q) as the final question.

By replacing the partial question with the original
question, the EM score improved to 34.27, an increase of
6.01 points. Moreover, when we integrated the original
question and RQ, the EM score further increased to 38.89,
representing an additional gain of 4.26 points (totaling a

10.63-point improvement). In conclusion, our findings
indicate that that use of inappropriate question types in
an evaluation set can result in incorrect question decom-
positions. We demonstrated that incorporating informa-
tion from the original question significantly enhances the
overall performance of the bridge type.

4.7.2 | Study for comparison-type
configuration

In Table 9, similar to the bridge-type study, we conducted
an experimental comparison between the impact of the
retrieval results of the original question (RQ) and
the influence of the augmented sub-answers (sub-A0s).

First, we found that the retrieval results of the origi-
nal question (RQ) negatively affected the performance of
the comparison type, in contrast to the bridge type. This
is likely caused by the original question in the compari-
son type involving two different entities, which led to a
high likelihood of noisy search results due to the mixing
of entity information. Thus, avoiding the use of RQ with
this type appears to be beneficial to enhancing the overall
performance (+0.34). Second, excluding the use of sub-
A0s resulted in a notable decrease in performance. This
indicates that the sub-A0s are crucial for determining the
final answer in the comparison type.

5 | CONCLUSION

In this paper, we introduced EffiChainQA, an efficient
chain-of-reasoning framework for multi-hop open-
domain QA tasks that leverages small LMs. Our Effi-
ChainQA consists of three modules: a reasoning-type
classifier, a question decomposer, and the RecomposeNet
for each reasoning type. Beginning with the classifier, the
reasoning type for incoming questions was discerned,
primarily categorizing them as bridges or comparisons.
The decomposer then simplified these questions into sub-

TAB L E 8 Comparison of EM outcomes for the bridge type

based on Reader input configurations: including either Q or sub-

Q2
0
and with or without RQ.

Question RQ EM Difference

Sub-Q20 ✓ 28.26

Q x 34.27 +6.01

✓ 38.89 +10.63

Note: Herein, RQ represents the retrieval results for the original question (Q),
and sub-Q20 denotes the augmented sub-question 2. The retrieval results for
the sub-Q20 is included in the input by default.
Abbreviation: EM, exact match.

TABL E 9 Performance comparison of EM for the comparison

type, considering different Reader input configurations: with/

without the augmented sub-As (sub-A
0
s) and with/without the

retrieval results for the original question (RQ).

sub-A0s RQ EM Difference

✓ ✓ 52.05

✓ x 52.39 +0.34

x x 40.08 �11.97

Note: By default, the original question (Q) and the retrieval results for sub-
questions (Rsub-Qs) are always included in the input.
Abbreviation: EM, exact match.
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questions by leveraging ONUS+L, a small LM, or
ChatGPT, a larger LM. The final module, RecomposeNet,
utilized both sub-questions and original questions to
derive the final answer for the identified type. Instead of
relying on LLMs, we designed a chain-of-reasoning pipe-
line that used smaller LMs.

The performance of the proposed method was ana-
lyzed using the HotpotQA dataset. Our method showed
improved EM performances by more than 15 points com-
pared with CoT and by more than 10 points compared
with SC. Moreover, it exhibited slightly better or compa-
rable performance over the retrieval-based LLM method.
Our system, which utilizes ONUS+L, yielded better
results than the Rewrite-Retrieve-Read method. Based on
the results from the system utilizing ONUS+L, we
observed that the chain-of-reasoning with small LMs has
the potential to exhibit capabilities comparable to that of
LLMs. Moreover, various comparative ablation experi-
ments have been conducted. For bridge type, we observed
that the use of the original question when generating the
final answer had an impact on performance improve-
ment. For the comparison type, the sub-answers had a
significant impact on performance.
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