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Abstract

Exposure to varied noisy environments impairs the recognition performance

of artificial intelligence-based speech recognition technologies. Degraded-

performance services can be utilized as limited systems that assure good per-

formance in certain environments, but impair the general quality of speech

recognition services. This study introduces an audiovisual speech recognition

(AVSR) model robust to various noise settings, mimicking human dialogue

recognition elements. The model converts word embeddings and log-Mel spec-

trograms into feature vectors for audio recognition. A dense spatial–temporal

convolutional neural network model extracts features from log-Mel spectro-

grams, transformed for visual-based recognition. This approach exhibits

improved aural and visual recognition capabilities. We assess the signal-

to-noise ratio in nine synthesized noise environments, with the proposed

model exhibiting lower average error rates. The error rate for the AVSR model

using a three-feature multi-fusion method is 1.711%, compared to the general

3.939% rate. This model is applicable in noise-affected environments owing to

its enhanced stability and recognition rate.

KEYWORD S
application programming interface, audiovisual speech recognition, lip reading, multimodal
interaction

1 | INTRODUCTION

Human speech is bimodal and involves audio and visual
information. Audio information detects the acoustic
waveform of a speaker, whereas visual information

detects lip movements [1]. Despite the challenges such as
auditory recognition in noisy environments, audiovisual
speech recognition (AVSR) is widely investigated and is
reported to exhibit excellent recognition capabilities
[2–6]. AVSR is used in technologies such as Microsoft
Azure, Google Assistant, and Amazon Alexa, which con-
vert analog signals into digital formats by acoustically
analyzing speech and automatically transcribing it into
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text [7–9]. However, commercial speech recognition
application programming interface (API) services are pri-
marily used indoors or in specific environments because
of low recognition rates in outdoor settings, where back-
ground noise can degrade the quality of acoustic wave-
forms. This has led to the emergence of noise robustness
as a critical factor for the realization of large-scale real-
world applications because open cloud-based speech rec-
ognition application programming interface (OCSR API)
services must demonstrate improved capabilities in chal-
lenging acoustic scenarios. [10, 11] Nevertheless, AVSR
technologies that combine auditory and visual informa-
tion can mitigate the influence of ambient noise, result-
ing in high recognition rates, even in the presence of
background noise. Accordingly, few studies have
reported that superior performance is achieved when
hearing and vision are combined in several groups.
[12, 13].

Humans use a bimodal interaction method based on
the multisensory integration of auditory (represented in
red, processed in the temporal lobe) and visual (repre-
sented in blue, processed in the occipital lobe) inputs to
recognize language. Accordingly, a system that can
reduce the impact of ambient noise was proposed
(Figure 1) [12]. In other words, the human nervous sys-
tem separately transmits information from different sen-
sory organs, and the combination of inputs enhances the
ability to react to, evaluate, and perceive external events
with high accuracy [14–16]. Therefore, bimodality is pre-
ferred over unimodality to minimize the effect of ambient
noise.

Speech and visual recognition present distinct chal-
lenges. In the case of speech recognition, because optimal
performance cannot be guaranteed in all circumstances,
exposure to varied noise environments degrades recogni-
tion performance. A system with decreased performance
can be used only in a limited particular context before
being applied to a real-world environment, resulting in

low-quality service and reduced expectations for con-
sumers. In the case of visual recognition, when audio
information is not used, recognition issues exist in
homophony words with identical mouth shapes. As a
result, we must overcome each issue with speech and
visual recognition. As a result, in this study, we devel-
oped a novel approach to address this issue.

We propose a noise-resistant system that combines an
OCSR API, log-Mel spectrogram, and lip-movement data
using multiple convergence methods. The bimodal sys-
tem outperforms the single-modality system. For audio-
based speech recognition, the recognized word lists from
the OCSR API were represented as vectors using a pre-
trained model to generate a one-dimensional (1D) vector.
In contrast, for vision-based speech recognition, the log-
Mel spectrogram image, in which the frequency unit of
the standard spectrogram is converted to a log-Mel unit,
and the lip-movement image are input to a newly pro-
posed deep neural network comprising an end-to-end
neural network to visualize audio speech data. A dense
spatial–temporal three-dimensional (3D) convolutional
neural network (CNN) was used for specific sequence
image extraction to reduce the number of parameters,
training time, and overfitting. Furthermore, an attention-
mechanism-based spatial attention approach was used to
extract features from the input sequence images, intensify
the feature representation of the region of interest, focus
on the information section locations, and supplement
channel attention. Bidirectional gated recurrent units
(GRUs) with linear layers were connected to prevent the
overfitting of small-scale data, overcome the lack of
visual information due to sequence image data, and
obtain specific image features. Subsequently, a new vec-
tor matrix was created by combining the 1D word vectors
generated by the audio and visual speech recognition
models, log-Mel spectrogram, and feature vector gener-
ated by the lip movement image. The newly created vec-
tor matrix was decoded using a connectionist temporal
classification loss function based on the beam search
approach to obtain a predicted word, which was used to
train the newly created vector matrix.

We evaluated the precision and effectiveness of our
architecture compared with existing visual feature extrac-
tion algorithms that have exhibited excellent perfor-
mance on a collected dataset to assess the performance of
speech, visual, and spectrograms using LipNet [17] as the
baseline model. Numerous evaluation findings demon-
strate that the proposed architecture outperforms existing
deep-learning techniques in terms of state-of-the-art per-
formance and efficiency.

The remainder of this paper is organized as follows:
Section 2 provides detailed information on the individual
components of the proposed architecture, Section 3

F I GURE 1 Multisensory integrated cognitive process

according to external events.
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describes our data collection environment and experi-
mental process, and Section 4 presents the quantitative
evaluation results. Finally, Section 5 concludes the paper.

2 | RELATED WORKS

Google [18] introduced Google Assistant, an artificial
intelligence (AI)-powered speech recognition assistant
with an open API that can be applied to various fields
such as automobiles and home appliances. Microsoft’s
Azure Cognitive Services [19] is a collection of precon-
structed, customizable AI models that can be used to add
AI capabilities to applications across multiple domains
such as speech, reading, language, and vision, including
speech recognition technology. IBM Watson [20] is a
cloud-native solution that utilizes deep-learning AI algo-
rithms to create tailored speech recognition for optimal
text transcription by leveraging knowledge of grammar,
language structure, and audio/speech signal composition.
Amazon Transcribe [21] is a service that converts speech
to text and allows easy integration with any application.
This technology has added a new privacy option for com-
mercial services that removes personally identifiable
information like name, credit card or bank number, and
social security number automatically [22]. In addition to
speech recognition, companies in Korea such as
ETRI [23], NAVER [24], and KAKAO [25] offer various
speech recognition services.

Deep learning technology has recently exhibited sig-
nificant performance improvements in sentence-level
speech recognition, visual speech recognition, and
speech-visual recognition studies using traditional predic-
tion techniques [26–29]. When comparing the word rec-
ognition rate performance for phrases on the same
benchmark dataset, the performance of deep learning-
based visual recognition studies [17] improved by 36.4%
over conventional visual recognition studies [30]. How-
ever, with increasing training data complexity, traditional
prediction techniques are faced with challenges such as a
large number of speakers, posture changes, lighting con-
ditions, and background environmental changes, among
other issues. In response to these challenges, Google
DeepMind introduced LipNet [17] in 2016, which is an
end-to-end model that utilizes visual speech recognition
technology to process sentence-level images of user lips
and predicts them as character sequences. LipNet com-
prises an encoder that processes inputs combined with
continuous two-dimensional (2D) images using a combi-
nation of space–time CNN and GRU, and a decoder that
uses the connectionist temporal classification (CTC) loss
function. The benchmark dataset GRID corpus [R] was
used to evaluate the model performance. While

lip-reading experts achieved a word error rate (WER) of
47.7% on the GRID corpus, LipNet demonstrated an
impressive performance with a WER of 11.4%.

In 2022, Jeon and others proposed a new architecture
that combined a commercial speech recognition API
with a visual speech recognition model [30]. They pro-
posed a learning method in which feature vector outputs
from a visual speech recognition model are combined
with word vectors generated by a pretrained word-
embedding model for words recognized in a commercial
speech recognition API and evaluated the performance
in eight noisy environments. The results demonstrated
that combining visual and audio information improved
the performance across all environments compared to
using only visual information. In conclusion, deep-
learning-based prediction techniques have shown the
ability to learn more deeply and extract more compre-
hensive features from complex data compared to tradi-
tional prediction techniques. Further, they have
demonstrated superior suitability to big data and tackle
visual ambiguity.

Therefore, the previous studies mainly proposed
models that combine cloud-based speech recognition
services with visual information, and log-Mel spectro-
gram information with visual information. However, the
model proposed in this study differs from previous
studies as it fuses three modalities using cloud-based
speech recognition results in audio information, log-Mel
spectrograms in visual information, and lip-movement
information. Previous studies confirm that deep-
learning-based visual recognition techniques must be
utilized to address visual ambiguity in speech recogni-
tion using visual information. Additionally, previous
research [31–33] primarily focused on evaluating and
comparing the performance of OCSR APIs in noise-free
or artificially generated noise environments using
benchmark datasets. However, performance evaluation
in various real-world noise environments is essential to
using speech recognition technology in real-world appli-
cations, and to this end, we conducted a performance
evaluation of the proposed model in nine real-world
noise environments. Furthermore, we attempted to
merge two types of visual information (lip-movement
information and log-Mel spectrograms) into the OCSR
API for noise-robust and superior performance in
diverse noisy conditions, and the proposed model exhib-
ited greater recognition rates in noisy environments
when compared to the existing OCSR API system.
Unlike the audiovisual speech recognizer model, which
uses only the user’s lip information, this performance
gain was accomplished by combining lip movement
information, log-Mel spectrograms, and auditory
information.
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3 | ARCHITECTURE

The proposed audio recognition module is illustrated in
Figures 2A,B and 3. It comprises an open cloud-based
speech-recognition API system, a log-Mel spectrogram
generated from input audio information, and user lip-
movement data.

3.1 | Audio module

The proposed audio recognition module is illustrated in
Figure 3. In previous studies [34, 35], we used an open
cloud-based speech recognition API using Microsoft’s
Azure Cognitive Services API [19], which had approxi-
mately 5%–10% better word recognition rates than Google
Assistant and Amazon Transcribe. To mitigate the impact
of performance changes over time, a new API that

surpasses the current API is provided whenever available.
Only recognizable words were utilized, allowing for easy
replacement if necessary. Audio data from a local device
with a microphone were input into the audio module in
real time and transmitted to Microsoft Azure’s open
cloud-based server for recognition. A list of recognized
words was generated, and using the Word2Vec embed-
ding model pretrained on 100 billion words from the
Google News corpus, the produced word list was trans-
formed into a 300-dimensional word vector, which was
then integrated into a 1D vector (Figure 2A). Word2Vec
[36, 37] embedding model is a distributed word represen-
tation method that expresses words with similar contexts
in similar vectors.

F I GURE 2 Block diagram of the proposed multimodal AVSR architecture. (A) Pretrained Word2Vec embedding model; (B) word

vector process; (C) dense spatial–temporal CNN model structure.

F I GURE 3 Process of the proposed audio module from input

audio to word vector.

F I GURE 4 Comparison of convolutions in (A) 2D and (B) 3D.

The width, length, sequence, height, weight, and 3D kernel of the

kernel are denoted by N, M, S, P, Q, and R, respectively.
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3.2 | Visual module

As illustrated in Figure 2, the visual module comprises
four components: a 3D CNN, dense spatial–temporal
CNN, spatial attention module, and bidirectional-GRU.
In contrast to the 2D CNN (1) in Figure 4A, the first ele-
ment, the 3D CNN, is effective in extracting features for
various lip-reading tasks, such as lip, tongue, and teeth
movements, as it encodes motion information in multiple
consecutive frames (Figure 4B) [17, 38]. A 3D CNN
(2) adds a 3D kernel to the 2D CNN to convert sequence
frames into a single-frame structure. In this structure, the
feature map is connected to the sequence frames of
the previous layer to capture the lip-movement informa-
tion in the image. Equation (2) of the 3D CNN adds 3D
kernel information to (1) of the 2D CNN, allowing fea-
ture maps in consecutive frames to be linked to consecu-
tive frames of the previous layer and to be converted into
a single frame, thereby capturing the object motion infor-
mation. In (2), (x, y, z) denotes the coordinates of the fea-
ture map/volume, (p, q)th denotes the spatial dimension
index of the kernel, and r denotes the temporal dimen-
sion index. j th and m denote the feature map/volume,
and i th denotes the convolution layer. Bij denotes the bias
of the feature map/volume, and tanh(�) denotes the
hyperbolic tangent function [37].

vxyij ¼ tanh bijþ
X
m

XPi�1

p¼0

XQi�1

q¼0

wpq
ijmv

xþpð Þ yþqð Þ
i�1ð Þm

 !
, ð1Þ
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We constructed a 3D CNN to extract lip-movement
features from consecutive frames. Additionally, to mini-
mize the transformation of internal variables, accelerate
the training process, and reduce the spatial size of the
3D feature map, we incorporated batch normalization
(BN), rectified linear unit (ReLU), and max-pooling 3D
layers sequentially, followed by another 3D CNN
(Table 1).

After the 3D CNN, Figure S1A(b–e) illustrates the use
of a proposed dense spatial–temporal CNN model to
reduce training time and save resources owing to smaller
parameters. Additionally, by establishing short and dense
connections between various layers, the network depth
increased, the gradient vanishing problem was mitigated,
and training efficiency improved. Parameter reduction,
bottleneck layers, transition layers, and slow growth rates
were implemented to minimize computation while

avoiding common overfitting issues that can arise during
training with limited data.

In Figure S1A(b–e, purple square), the “Dense block”
structure and diagram of the BN layer, ReLU layer, 3D
convolution layer, BN, ReLU, and 3D convolution layers
are sequentially connected. Figure S1A(b–d, yellow
square) shows a “transition” structure in which BN,
ReLU, 3D convolutional, and average 3D pooling layers
are sequentially connected. Additionally, following the
“transition” structure shown in Figure S1A(b) (Table S1),
a standard dropout layer was connected, and pixels were
randomly dropped to prevent strong correlation in fea-
ture maps between successive frames [39]. In addition,
the spatial dropout layer connected to the “transition”
structure, shown in Figure S2C, was effectively used to
extract fine movement features such as lips, teeth, and
tongue with strong spatial correlation [31–43]. Therefore,
the proposed dense spatial–temporal CNN network com-
prises one layer that represents a nonlinear transforma-
tion Hl, and the output of the layer can be expressed as xl
(3), where x0, x1, ���, and x(l–1) denote the volume of the
3D feature created in the previous layer and [���] denotes
a concatenation operation.

xl ¼Hl x0, x1, � � �, xl�1½ �ð Þ: ð3Þ

In the proposed model, a spatial attention module
that focuses on the position of the information
section and complements the attention channel is com-
bined to effectively extract the features of fine move-
ments (lips, teeth, and tongue) with a strong spatial
correlation (Figure S1A(a) and Table S1) [44]. The spa-
tial attention module focuses on utilizing inter-space
interaction to accurately detect the most identifiable and
useful part of the input continuous image frame, that is,
the lip movement [44]. The spatial attention module
focuses on utilizing inter-space interaction to accurately
detect the most identifiable and useful part of the input
continuous image frame, that is, the lip movement [44].
The spatial attention map (MS (F) � R (H�W)) aggregates
the channel information of the feature maps by
concatenating the convolutional, average pooling, and
max pooling layers sequentially, followed by the
concatenated feature descriptors, and generates two 3D
maps (Favg

s � R (H�W) and Fmax
s � R (H�W)). The 3D spa-

tial attention map generated by connecting and convolv-
ing with the existing convolution layer is shown in (4)
and (5), where σ denotes the sigmoid function, and
f (7 � 7) is the filter size of 7 � 7 representing the convolu-
tion operation.

MS Fð Þ¼ σ f 7�7 AvgFool Fð Þ;MaxPool Fð Þ½ �ð Þ� �
, ð4Þ
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MS Fð Þ¼ σ f 7�7 Fs
avg;F

s
max

h i� �� �
: ð5Þ

3.3 | Concatenation module

The proposed model combines the word vector output from
the audio module, the log-Mel spectrogram output from the
visual module, and the feature vector of the lip-motion
image to create a single vector (Figure 5). Recurrent neural
network (RNN) models, such as RNN, LSTM, and GRU
algorithms, should be used to classify time-series input data,
such as log-Mel spectrograms and lip movements. In the
proposed model, we trained the propagation and control of
the flow of time-series data using a two-layer bidirectional
GRU structure with update and reset gates (Figure 5D)
(Table S1) [44]. By utilizing update and reset gates, it is pos-
sible to address the vanishing gradient problem that exists
in traditional RNN algorithms and capture rich information
between two networks owing to the bidirectional structure.

Consequently, the input sequence that passed through the
bidirectional GRU was fed through the merge layer and
output as a tensor. Following the Bi-GRU module, learning
was performed using the CTC loss function (Figures 2 and
5) [45]. The CTC loss function produces a sequence of ran-
dom vectors to parameterize the distribution of a sequence
of label tokens without explicit alignment with continuous
input data. The output probability vector sequence is condi-
tionally independent of the marginal distribution generated
at each time step. When the language model is ambiguous
in terms of probability, it is decoded using a beam search
approach to restore the label temporal dependencies.

4 | EXPERIMENT

4.1 | Dataset and data preprocessing

To construct a word table, we referred to the speech com-
mand dataset introduced by Google [46, 47] and collected
data for Version 3 following a previous study (Table S2)
[31, 35]. A total of 40 participants (20 males, 20 females;
average age 29.14 years) were recruited based on their
familiarity with speech recognition devices as they used
speech recognition technology at least five times a day in
noise environments. To balance gender and English lan-
guage familiarity, we included both native speakers
(10 males and 10 females) and bilingual, advanced
English-speaking participants (10 males and 10 females)
(Figure 6A). Participants wore a head-mounted device
(Figure 6B) that was equipped with a webcam and a
built-in microphone, sat in front of a display, and read
and repeated 70-word lists displayed 100 times at 3-s
intervals (25 fps) (Figure 6C). To collect generalized data
from participants, we selected a within-subject design

F I GURE 5 Detailed schematic of the proposed multimodal

AVSR architecture. (A) 3D CNN. (B) Dense spatial–temporal CNN.

(C) Spatial attention module. (D) Bi-GRU.

F I GURE 6 Data collection with an audio–video recording

device: (A) experiment setup; (B) head-mounted device; and

(C) camera for collecting lip-movement data.
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that can minimize variability due to individual
differences between participants. In addition, the within-
subject design used a randomized partial counterbalan-
cing, one of the partial counterbalancing, to prevent
order and carryover effects problems. Audio and video of
the participants were acquired via a Logitech webcam
(C920 HD PRO WEBCAM) with stereo microphone spec-
ifications at a resolution of 1920 � 1080 (FHD) and a
frame rate of 30 fps. In total, 280000 video clips including
full audio (stereo, sample rate of 44100 Hz) and video
(resolution of 640 � 480 pixels at 30 fps) information
were collected.

The proposed model was trained using training and
validation datasets obtained by dividing the data col-
lected 100 times per class in a 7:3 (training: validation)
ratio. Because of concerns about participants’ concentra-
tion and deteriorating pronunciation over the course of
100 repetitions of the same experiment, three sections
of the collected data, namely, the early (21–30), middle
(51–60), and last (81–90) utterances, were used exclu-
sively for the validation set. Specifically, the training
dataset comprised seven subsets (1–9, 10–20, 31–40, 41–
50, 61–70, 71–80, and 91–100) out of a total of 100 subsets,
with a 7:3 ratio for training, and three subsets (21–30,
51–60, and 81–90) for validation purposes. This approach
was adopted to prevent overfitting caused by poor
pronunciation data.

The problem caused by differences in frequency-
domain emphasis by various audio input devices was
addressed in this study’s audio preprocessing step using a
log-Mel spectrogram because it can provide more accu-
rate and detailed characteristics in the high- and low-
frequency domains than the Mel-spectrogram [48]. In
addition, log-Mel spectrograms can improve perfor-
mance, as demonstrated by the DCASE 2020 challenge
for audio scene classification [48]. At a sampling rate of
16000, each 3-s sample was processed to create a single
log-Mel time-frequency spectrogram. A log-Mel spectro-
gram was produced using a linearly spaced triangular fil-
ter at the Mel scale. A total of 751 window frames, each
with a window size of 25 ms, were created from the 3 s
speech sample, of which 750 were used because the ini-
tial blank frame without speech input was disregarded as
it was silent to preserve consistency.

In the visual data preprocessing step, a histogram of
oriented gradients (HoG) feature-based Dlib linear classi-
fier was utilized to extract the subject’s face and lip
regions [49]. The Dlib classifier can detect face and
lip regions and create a bounding box with diagonal edge
coordinates (x, y) along with 68 landmarks predicted
using an online Kalman filter-based iBug program [50].
An affine transformation with a mean and variance of
0 was thereafter applied for Red Green Blue (RGB)

channel normalization on the central lip region of the
entire training dataset extracted from each frame using
the two techniques. Data augmentation was performed
by horizontally mirroring the sequence data during the
training process [17]. All the proposed models were
trained and evaluated using the same data after applying
preprocessing and data augmentation techniques.

4.2 | Implementation

To evaluate the performance of the proposed model
trained using the CTC loss function based on the beam
search technique, Keras with a TensorFlow backend was
used in a Linux Ubuntu experimental environment. The
evaluation environment comprised an Intel® CoreTM

i7-7700K CPU, 32GB RAM, and an NVIDIA GeForce
RTX 2080-Ti GPU running the Linux Ubuntu 18.04 LTS
operating system. The initialization was performed on
the network parameters of the proposed model, excluding
the initialized orthogonal GRU matrix and hyperpara-
meters. A mini-batch size of 8, learning rate of 0.0001,
and Adam optimization [51] were used for training. The
training included a baseline model trained on the col-
lected dataset until the proposed model was overfitted.
Because of the constraints of the computational require-
ments for training, the mini-batch size was set to be
small, resulting in uneven real-value fluctuations, which
were smoothed using a moving average and visualized as
smooth curves.

Considering factors such as lighting that may adversely
affect the visual information of the proposed model, the
data collection and evaluation environments were consid-
ered to be different during the performance evaluation.
The performance evaluation was conducted in a noise
environment without any control over lighting and noise,
which was completely different from the existing data col-
lection environment. We intended to conduct an evalua-
tion of the proposed model in a similar environment,
assuming everyday environments where real speech recog-
nition systems could be used. The participants of the
audiovisual data collection stage were excluded from the
performance evaluation stage. The audiovisual model used
for performance evaluation was divided into three catego-
ries: audio-only, visual-only, and audiovisual speech.

4.3 | Performance evaluation metrics

The performance and efficiency of the proposed model
were compared through an evaluation process using
character error rate (CER) as the standard measure. The
evaluation included a comparison of parameters, learning

28 JEON ET AL.



time, and other relevant factors. The CER represents the
percentage of incorrectly predicted characters, with a
lower value indicating a better performance of the speech
recognition system. The calculation of the CER was used
in the evaluation.

CER %ð Þ¼ SþDþ I
N

�100, ð6Þ

where S, D, I, and N denote the different types of errors
made in speech recognition, namely, substitution, dele-
tion, insertion, and the total number of characters in the
ground truth, respectively. These errors were used to
calculate the CER, which are standard measures of the
performance of automatic speech recognition systems. In
addition to the CER, the quantitative performance of the
proposed model was evaluated using synthesized noise
benchmark data to assess the signal-to-noise ratio (SNR).
SNR is a measurement method used to compare the
desired signal with the signal of background noise, defined
as the ratio of the signal power to the noise power. Noise
was generated using the multi-channel acoustic noise
database (DEMAND), which includes ambient noise
from eight different environments recorded with a
16-channel array microphone, such as public, transporta-
tion, nature, and streets [52]. The recorded speech data
were synthesized using this noise for evaluation.

5 | RESULTS

5.1 | Convergence rate

We compared the tendency of the loss function to change
according to three factors (audio only, visual only, and
audiovisual). Figure S2 depicts the training and verifica-
tion losses for Models B–G listed in Table S3, and
Table S2 summarizes the performances of all trials using
the obtained datasets. Under identical experimental set-
tings and learning rates (learning rate = 0.0001), models
(B–D), which did not employ audio, had fewer parame-
ters and faster convergence rates than models (E–F) that
employed audio. Loss reduction assumes an exponential
form for rapidly converging “high learning rates,” which
can quickly converge to generate overfitting difficulties
and learning stagnation. However, compared with the
other models, the log-Mel spectrogram of the audio-based
model group demonstrated more consistent convergence
rates and trends, and our suggested Model G exhibited
the lowest overfitting, thereby avoiding the steadiest
training loss. Therefore, Model G tended to converge
more steadily than other models while additionally
concatenating log-Mel spectrogram information.

5.2 | Characteristic accuracy rate

Figures 7 and 8 and Table S3 present the performances
of the proposed and comparative models, respectively.
Figure 7 depicts the actual values as shadow portions of
the image and smooth values as curves for training
the proposed model. Although the proposed model
increased the average epoch time by approximately 30 s
compared with the baseline (Model A), the CER
improved significantly by 9.157%. In addition, Model B,
which did not use speech as additional information,
and Model E, which used speech as additional informa-
tion, exhibited a decrease in the number of parameters
and learning time compared to Model A, and the accu-
racy performance improved by 4.226% and 7.183%,
respectively. In addition, when comparing the group
that did not use speech (Models B–D) to the baseline
(Model A), the performance improvements were
4.931%, 4.245%, and 1.974%, respectively, without a sig-
nificant change in the average epoch time, while the
group that used speech (Models E–G) exhibited
improvements of 7.579%, 8.033%, and 9.157%, respec-
tively. In addition, Models C and F, using the spatial
attention technique, improved the performance by
0.686% and 0.454% compared to Models B and E,
respectively, without significant changes in the number
of parameters. Consequently, the proposed model dem-
onstrates superiority by exhibiting significant perfor-
mance improvements without large parameters and
learning time changes compared with the baseline and
other models (Figure 8).

F I GURE 7 Training steps for CER comparison between the

proposed model and other models: models (A) a; (B) B; (C) C;

(D) D; (E) E; (F) F; and (G) G.
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5.3 | Performance in noisy
environments

As shown in Figure S4 and Table S4, the word accuracy
of each model was evaluated at different SNR (dB) values
by synthesizing each of the nine noisy environments in
the speeches of the participants. Depending on the com-
position of the auditory and visual information, seven
models were evaluated as A, V(L) for visual information
that used only lip information, V(L + S) for visual infor-
mation using lip and log-Mel spectrogram information,
and A + V(L) for auditory and lip and log-Mel spectro-
gram information. The use of only the auditory data
(black dotted lines) of the single-modal approach exhib-
ited approximately 3%–4% WER performance in nine
noisy environments, and the OCSR API, which per-
formed well only in certain environments, such as

indoors or vehicles, was better than the quantitative per-
formance shown in two previous studies [31, 35]. There-
fore, in the clean environment listed in Table S4, the
OCSR API exhibited an accuracy of 3.939 ± 0.313%
(Table S5). However, when speech recognition was
attempted using only visual information (yellow and blue
dotted lines) with a single-modal approach, the perfor-
mance was somewhat inferior compared to using only
auditory information, and, on average, the WER perfor-
mance was approximately 4%–6% in nine noisy environ-
ments. The average WER in the nine noisy environments
was 6.138% when only lip information was used, and it
improved to 4.016 ± 0.241% when log-Mel spectrogram
information was used. Further, if the log-Mel spectro-
gram is used as additional information, the performance
changes owing to noise (Figure S4, blue line). As the SNR
increased, the tendency of the blue line decreased, and
the performance improved. When both auditory
and visual stimuli (purple and red lines) were used, per-
formance improved in all nine noise environments.
Table S5 summarizes the performance parameters when
audio and visual information were combined. When log-
Mel spectrogram information was added to the existing
lip model, the performance improved by 2.228% and
2.305%, respectively. To perform a more accurate quanti-
tative evaluation, those who participated in the data col-
lection experiment were excluded, and the evaluation
was performed in an environment completely different
from the data collection environment. Therefore, some
actual applications can contribute to the differences
between the learning and evaluation results. Figure S3
shows the statistical significance of the t-test between
each group in the nine noisy environments. The WER
performance statistics in the nine noisy environments
improved A + V(L) on average, with recognition rates of
0.678% and 0.755%, respectively, compared with A and V.
In addition, when comparing A + V (L + S), A, and V, it
improved by 2.228% and 2.305%, respectively, and we
demonstrated that adding the log-Mel spectrogram of
speech to visual information helped improve perfor-
mance in noisy environments. Unlike the previous OCSR
API [31, 35], which exhibited excellent performance only
in certain environments, it exhibited similar performance
in all nine noise environments and an evenly stable per-
formance overall.

6 | DISCUSSION

This study proposed a new AVSR model for the three-
feature (word embedding, lip-movement, and log-Mel
spectrogram) multi-fusion method that can operate reli-
ably and repeatedly in various application scenarios. To

F I GURE 8 Comparison of the number of parameters and

learning time between the proposed model and other models;

(A) number of parameters; (B) average epoch time.
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evaluate the proposed model, three features were com-
bined to compare the training step, error rate, and accu-
racy, and SNR evaluation was performed by synthesizing
speeches in nine noise scenario environments that could
be used in a real environment. Consequently, the pro-
posed model exhibited the most stable convergence
process and superior performance without significant
changes in parameters and training time compared to
other models, and it proved to be more robust to noise
than previous studies [30, 34]. In particular, by adding a
new specific point, the log-Mel spectrogram information,
the model exhibited a performance improvement of
approximately 1.6%–1.2% over the performance of the
model that used only two existing features (word embed-
ding and lip movement).

For practical applications in future scenarios, nine
noise environments were synthesized into input speech
information to measure the SNR of the six stages. Audio-
based speech recognition systems, which exhibited excel-
lent performance only in certain environments, such as
automobiles and indoors in previous studies [31, 35],
were improved on their own and exhibited stable perfor-
mance in nine noisy environments. The improved
performance of the OSCR API produces better recogni-
tion results. Therefore, it acts as a more reliable input to
our proposed model using the output results as input to
the model.

7 | CONCLUSION

We demonstrated a new approach for a multimodal-
based AVSR model that combines three features to
develop a robust speech recognition system in an ambi-
ent noise environment. The proposed system uses audi-
tory information from word embedding techniques that
upload input speech to an OCSR API to generate recog-
nized words as word vectors and visual information from
the log-Mel spectrogram that transforms the RAW data
of speech into a Mel-scale. As additional visual informa-
tion, the movement information of the lips was used
together to finally concatenate the log-Mel spectrogram
and lip information as input to the visual recognition
model. Previous studies demonstrated that OCSR APIs,
which performed well only in certain environments,
improved on their own to demonstrate performance sta-
bility. We further demonstrate that as the performance of
open cloud-based speech APIs improves, the performance
improves reliably when we combine our proposed
models. Therefore, this system can be applied to the
Internet of Things (IoT) and robot fields and will also
play a significant role in applications such as cinematog-
raphy, automobiles, and hospitals that require speech

recognition in noisy environments. In future studies, we
will demonstrate the practicality of the system by apply-
ing the proposed model to specific applications. In partic-
ular, the proposed system will be a system that can be
actively used in movie shooting or hospitals in noisy
environments to help patients or situations where con-
versation is difficult owing to speech recognition prob-
lems. Future models will attempt to develop integrated
systems by combining language models that can interpret
syntax. In addition, we will develop a lightweight model
for application in the fields of robots and IoT.
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