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Abstract

We introduce a high-performance named entity recognition (NER) model for

written and spoken language. To overcome challenges related to labeled data

scarcity and domain shifts, we use transfer learning to leverage our previously

developed KorBERT as the base model. We also adopt a meta-pseudo-label

method using a teacher/student framework with labeled and unlabeled data.

Our model presents two modifications. First, the student model is updated

with an average loss from both human- and pseudo-labeled data. Second, the

influence of noisy pseudo-labeled data is mitigated by considering feedback

scores and updating the teacher model only when below a threshold (0.0005).

We achieve the target NER performance in the spoken language domain and

improve that in the written language domain by proposing a straightforward

rollback method that reverts to the best model based on scarce human-labeled

data. Further improvement is achieved by adjusting the label vector weights in

the named entity dictionary.

KEYWORD S
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1 | INTRODUCTION

Named entity recognition (NER) is a fundamental task
in information extraction that focuses on locating and
categorizing named entities from unstructured text into
predefined classes, such as person names, organizations,
locations, medical codes, time expressions, quantities,
monetary values, and percentages [1]. NER can be for-
mulated as a sequence labeling problem to assign an
appropriate label to each word within a sentence [2]. In
recent years, considerable research effort has been
devoted to developing end-to-end neural-based sequence
labeling models for NER [3–6]. In particular, neural
network architectures based on pretrained language

models have exhibited remarkable performance in
single-domain NER [7–9]. Nevertheless, these models
face challenges, such as dependency on large training
datasets to prevent overfitting and considerable perfor-
mance degradation under domain shifts [10]. Acquiring
sufficient training data for new domains can be time-
consuming and costly when constructing human-
labeled data.

We aimed to train a high-performing NER model in
both the written and spoken language domains. While
written language had abundant human-labeled data
(approximately 250 000 sentences), spoken language
faced data scarcity with approximately 25 000 human-
labeled samples. To address this problem, we adopted
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transfer learning and used the Korean-specific KorBERT
as the base model for NER in spoken language.

Transfer learning has emerged as a promising
approach to handle data scarcity and domain shifts in
various applications [11]. Its primary objective is to
enable a target model to adapt swiftly to new domains
using limited or automatically generated training data,
thereby avoiding the need to retrain from scratch [12]. By
employing domain adaptation, a subtype of transfer
learning, we aimed to bridge the domain gap between
written and spoken language, transferring pertinent
knowledge from a well-resourced written language model
to a spoken language model.

In this study, we adopted the meta-pseudo-label
(MPL) method for domain adaptation in NER. The MPL
method can enhance the classification performance on
the ImageNet dataset and employs semi-supervised learn-
ing that leverages both labeled and unlabeled data within
a teacher/student framework [13]. The student model
learns from a minibatch of pseudo-labeled data annotated
by the teacher model and human-labeled data, whereas
the teacher model learns by applying a reward signal
(feedback signal) that reflects the student model perfor-
mance on a minibatch drawn from a labeled dataset.

In natural language processing, MPLs have been
employed to complement human-labeled data. For exam-
ple, a student model has been trained by evaluating the
quality of pseudo-labeled data alongside human-labeled
data [14]. In He et al. [15], a feedback score has been
obtained to measure the improvement after updating a
student model with labeled data. During the teacher
model update, the feedback score has been used in the loss
of pseudo-labeled data. Our proposed model differed from
these approaches in two key aspects. First, we updated the
student model using the average loss computed from both
human- and pseudo-labeled data. Second, we mitigated
the impact of noisy pseudo-labeled data by assessing the
feedback score and updating the teacher model only when
the score fell below a threshold set to 0.0005.

The proposed NER method achieved the target per-
formance in the spoken language domain. However,
because performance in the written language domain did
not meet our expectations, we conducted additional
research to enhance the model. Specifically, we adopted a
simple yet effective rollback method that evaluates the
performance at regular intervals and reverts to the best
model based on scarce human-labeled data. In addition,
we improved the model performance by adjusting the
label vector weights in the named entity dictionary.

The contributions of this study are summarized as
follows:

1. Innovative use of MPL for NER with enhanced
performance. We innovatively apply the MPL
method to NER, enhancing classification by leverag-
ing both labeled and unlabeled data, and introduce a
feedback mechanism to mitigate the impact of noisy
pseudo-labeled data.

2. Performance enhancement techniques in differ-
ent language domains. Our method substantially
improves the NER performance in both spoken and
written language domains by employing a rollback
method with a named entity dictionary for perfor-
mance evaluation and label vector weight adjust-
ments. As a result, the F1-scores of our method
considerably surpass those of baseline models.

The teacher model with the best performance was
selected, with an F1-score of 93.5% in the written lan-
guage domain on the evaluation set, surpassing that of
the baseline model by 3.38%. Similarly, in the spoken lan-
guage domain, the teacher model achieved an F1-score of
94.16% on the evaluation set, outperforming the baseline
model by 1.89%.

The remainder of this paper is organized as follows.
Related work is discussed in Section 2. The proposed
method is detailed in Section 3. In Section 4, we report
experimental results. Finally, conclusions and directions
of future work are presented in Section 5.

2 | RELATED WORK

2.1 | Transfer learning

Transfer learning can be broadly categorized into induc-
tive transfer learning, which transfers knowledge across
different tasks when the source and target tasks differ,
and transductive transfer learning, which leverages simi-
lar knowledge when the source and target tasks are the
same [16]. Transductive transfer learning is further
divided into domain adaptation and cross-lingual learn-
ing depending on variations in domains or languages.

Three main methods have been employed for domain
adaptation: representation [17–22], data weighting and
selection [23–26], and self-labeling [27,28–30]. Self-label-
ing, which belongs to the semi-supervised learning cate-
gory, trains a model on labeled samples and subsequently
uses this model to assign pseudo- or proxy labels to unla-
beled samples. In subsequent iterations, these labels are
used to refine the model. In this study, we adopted self-
labeling for domain adaptation considering the same task
and language but different domains.
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2.2 | KorBERT

In natural language processing, transformer-based pre-
trained models have been widely used, such as bidirec-
tional encoder representations from transformers
(BERT) [31–33]. Although multilingual BERT demon-
strates impressive performance across various natural
language processing tasks owing to its pretraining on
Wikipedia data for 104 languages, it may not fully cap-
ture specific linguistic characteristics of individual lan-
guages [34]. For example, Korean, an agglutinative
language with morphologically rich properties, presents
challenges when subjected to BERT standard tokeni-
zers. As meaningful morpheme units may lose their
meaning during tokenization, an approach tailored for
Korean should be devised. Accordingly, we propose
KorBERT (https://aiopen.etri.re.kr/bertModel, Table 1),
a model specially trained for Korean using the mor-
pheme unit byte-pair encoding method that preserves
the essence and meaning of morpheme units during
tokenization. KorBERT outperforms Google multilin-
gual versions by 4.5% on average for several down-
stream tasks.

The proposed NER model used morpheme-analyzed
sentences as inputs and performs tokenization at the
morpheme level. We used KorBERT as the base model
for training the NER model. Typically, BERT-based
NER models employ conditional random fields (CRF)
or bidirectional long short-term memory-CRF to deter-
mine the labels using the last hidden vector. We used
KorBERT to obtain vector representations of deep fea-
tures, followed by CRF as the downstream layer for
sequence labeling and generating the NER results. By
fine-tuning BERT on training data, the vector represen-
tation combined linguistic knowledge from the pre-
trained model with task knowledge from the NER
training data. Additionally, CRF allowed to capture
conditional transition probabilities between different
tags, thus mitigating logic errors in entity tag sequences
during prediction (e.g., an I tag following an O
tag) [35]. To this end, we adopted KorBERT using the
Hugging Face transformer package and then seamlessly
combined KorBERT and CRF by importing the
TorchCRF package (https://pytorch-crf.readthedocs.io/
en/stable/) for PyTorch.

3 | NER BASED ON TRANSFER
LEARNING

3.1 | Initialization of teacher and
student models

We extensively fine-tuned a teacher model using abun-
dant labeled data from the written language domain
based on a base model (KorBERT + CRF) as follows:

θWD
B ¼ argmin

θ

1
M

XM

m¼1
LWD
m θm�1

B

� �
,

LWD
m θm�1

B

� �¼ l YWD
m , f XWD

m ;θm�1
B

� �� �
,

ð1Þ

where θT and θS represent the parameters of the teacher
and student models, respectively, θB represents the base
model (KorBERT+CRF), M is the number of batches,
which corresponds to the number of training steps and
model updates, and θmB is the parameter of the base
model at step m. The expressions that distinguish the
domains are indicated in superscripts. WD is the written
language domain, SD is the spoken language domain,
and WD! SD denotes the transition from the written to
the spoken domain. For example, θWD

B denotes the
parameter of the base model trained on human-labeled
data in the written language domain, XWD

m , YWD
m

� �
denotes the mth batch of sentences and their correspond-
ing labels in the written language domain, f XWD

m ;θm�1
B

� �
denotes the label predictions of batch XWD

m by the base
model at step (m� 1), and l YWD

m , f XWD
m ;θm�1

B

� �� �
denotes

the cross-entropy loss between answer labels of the writ-
ten language domain and predicted labels of the base
model at step (m� 1), expressed as LWD

m θm�1
B

� �
.

Subsequently, we performed additional fine-tuning of
the teacher model, which was initially trained on
human-labeled data from the written language domain
and scarce human-labeled data from the spoken language
domain, as expressed in (2). Fine-tuning in a
transformer-based BERT resembles transfer learning.

θT ¼ θWD!SD
B ¼ argmin

θ

1
M

XM

m¼1
LSD
m θWD,m�1

B

� �
,

LSD
m θWD,m�1

B

� �¼ l Y SD
m , f XSD

m ;θWD,m�1
B

� �� �
,

ð2Þ

TAB L E 1 Characteristics of KorBERT.

Tokenizer Data No. of vocabs No. of parameters Structure

Morpheme-level character-level
(WodPiece)

23 GB/4.7 billion morphemes 30 349 110 million 12 layers,768 hidden layers,
12 heads
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As shown in Figure 1, the teacher model was trained
through simple transfer learning, while the student
model was trained by combining written and spoken lan-
guage labeled data as follows:

θS ¼ argmin
θ

1
M

XM

m¼1
LWDþSD
m θm�1

B

� �
,

LWDþSD
m θm�1

B

� �¼ l YWDþSD
m , f XWDþSD

m ;θm�1
B

� �� �
,

ð3Þ

where WDþSD indicates the combination of the written
and spoken domains and YWDþSD

m represents the labels
merged from the two domains. Model training with the
desired performance is difficult when a small training set
is available, and collecting additional training data is
time and labor intensive. Alternatively, we used transfer
learning with an improved MPL method to increase the
model performance using automatically generated
pseudo-labeled data.

3.2 | Generation of pseudo-labeled data

After training the teacher model, we generated pseudo-
labeled data in the spoken language domain, as shown in
Figure 2. By employing the trained teacher model, we
automatically labeled raw spoken language data, leverag-
ing the teacher knowledge to annotate the dataset. This
process supported training of the student model in the
spoken language domain [36]. Notably, we generated
pseudo-labeled data at learning step t as follows:

uXSD
m ,duY SD

m,θtT

� �
¼ f uXSD

m ;θtT
� �

, ð4Þ

where uXSD
m is the mth batch of unlabeled raw data in the

spoken language domain and cuY SD

m,θtT
represents the pre-

dicted labels of the teacher model.

3.3 | Student model update

We trained a student model specifically tailored to the
spoken language domain by using both the generated
pseudo-labeled data and available human-labeled data.
In [13], only pseudo-labeled data were used for student
model training. Sufficiently large sets of raw data are
required to generate and use pseudo-labeled data until
the student model achieves the desired performance in
fields like image processing. On the other hand,
acquiring a large raw corpus with several named enti-
ties in the spoken language domain is challenging.
Therefore, we improved the performance by incorporat-
ing small amounts of human-labeled data and pseudo-
labeled corpora into training. To update the model, we
calculated the loss from input data, which is equivalent
to model learning. We computed the loss for both
human- and pseudo-labeled data using the student
model, as shown in (5) and Figure 3. Subsequently, we
updated the student model by averaging the two
losses.

θ1S ¼ argmin
θ

AVG LSD
1 θ0S
� �

, bLSD

1 θ0S
� �� �

,

LSD
1 θ0S
� �¼ l Y SD

1 , f XSD
1 ;θ0S

� �� �
,

bLSD

1 θ0S
� �¼ l cuY SD

1,θ0T
, f uXSD

1 ;θ0S
� �� �

:

ð5Þ

To determine the feedback score of the student
model, we used loss bLSD

1 θ0S
� �

from the first pseudo-
labeled data generated by the student model in the previ-
ous step (θ0S). The performance was improved by using
pseudo-labeled data for learning. By including human-
labeled data in the model update, we mitigated noise in
the automatically generated pseudo-labeled data.

F I GURE 1 Diagram of initialization of teacher model.

F I GURE 2 Diagram of generation of pseudo-labeled data.
F I GURE 3 Diagram of updating student model with proposed

loss averaging.
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3.4 | Calculation of feedback score

The feedback score from the loss of the student model for
labeled instances adjusted the teacher model to improve
pseudo-labeled data [13], as shown in Figure 4, as follows:

H1
S ¼ bLSD

1 θ0S
� ��LSD

1 θ1S
� �� lrS, ð6Þ

where H1
S is the feedback score of the first student model.

The learning rate of the student model (lrS) was used to
calculate the feedback score.

3.5 | Teacher model update

After calculating the feedback score, the teacher model
was updated as follows:

θ1T ¼ argmin
θ

AVG LSD
1 θ0T
� �

, bLSD

1 θ0T
� �� �

,

bLSD

1 θ0T
� �¼ bLSD

1 θ0T
� ��H1

S � lrS,
LSD
1 θ0T
� �¼ l Y SD

1 , f XSD
1 ;θ0T

� �� �
:

ð7Þ

The loss for the initial pseudo-labeled data generated
by the teacher model, denoted as bLSD

1 θ0T
� �

, was deter-
mined based on the feedback score and learning rate of
the student model. After the teacher model completed
learning step t, the next iteration began at learning step
(t+ 1). This involved generating pseudo-labeled data
using the updated teacher and student models. Thus, we
developed a conditional update to the teacher model to
enhance its performance, as shown in Figure 5. The
teacher model was updated only when the student model

feedback score fell below a threshold of 0.0005. The
threshold was determined experimentally to ensure that
the distribution of new pseudo-labeled data reflected that
of human-labeled data.

3.6 | Rollback-based training

Our primary aim was to enhance the NER performance
in the spoken language domain under limited human-
labeled data. Despite the improvements of the proposed
method, we explored additional strategies to further
increase the performance. Rollback learning employs the
expected error reduction to eliminate outliers or relabel
misclassified samples [37]. Accordingly, we devised a
rollback method to maintain the best-performing model
and evaluate its performance using scarce human-labeled
data, as shown in Figure 6. We continuously assessed
whether the teacher model exhibited performance
improvement. If the performance was lower than that of
the previous best model, the trained model was rolled
back to the previous best model. Otherwise, if the current
performance was high, the highest performance and
model were updated to the current values. The evaluation
was conducted over N learning steps. By maintaining the
teacher model with the best performance, we ensured
the generation of a high-quality pseudo-corpus at each
step. We used 10 steps in this study.

3.7 | Use of external named entity
dictionary

Numerous studies have been aimed to enhance the NER
performance using external resources. For instance, a
method for retrieving and selecting semantically relevant
texts through a search engine has been proposed using
the original sentence as a query to find external con-
texts [38]. In this study, we explored the application of

F I GURE 4 Diagram for calculating feedback score.

F I GURE 5 Diagram of conditional teacher model update. F I GURE 6 Diagram of rollback-based training.
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the named entity dictionary, which is a crucial resource
in NER. For each token, we retrieved the corresponding
label from the dictionary, and the matched labels were
employed during learning or inference. Figure 7 illus-
trates the dictionary application during training.

KorBERT produced logits to compute the weights of
all labels per token. The final label was determined using
CRF based on these logits. The labels matched in the dic-
tionary were incorporated into the logits as features with
an additional weight value of N = 9. Owing to the ambi-
guity of the named entities, multiple labels could be
matched. A specific named entity could be identified
using this method during inference. For instance, legal
names were recognized as named entities with label
CV_LAW. In general, legal names have a negligible prob-
ability of belonging to other named entity labels. Conse-
quently, unconditionally recognizing legal names as
CV_LAW promoted the NER performance.

4 | EXPERIMENTS

We assessed the enhanced performance of the proposed
method in comparison with a conventional transfer
learning technique (BERT with fine-tuning). We aimed
to achieve the target performance and conducted experi-
ments on an established evaluation set, which has been
widely used for testing NER in our projects.

4.1 | Datasets and experimental setup

The dataset employed in this study comprised 15 primary
labels and 146 sublabels. Table 2 lists representative labels,
such as person (PS), artifact (AF), and organization (OGG),
along with concrete instances and selected sublabels. For
instance, AF_CULTURAL_ASSET indicates cultural prop-
erty, whereas AF_MUSICAL_INSTRUMENT designates a
musical instrument. Likewise, OGG_ECONOMY indicates
an enterprise, and OGG_EDUCATION indicates an educa-
tional institution. From an input sentence, named entities
were recognized and aligned with the corresponding object

name labels. Fifteen additional categories are listed in
Table A1 in the Appendix.

As outlined in Section 3.7, we employed a named
entity dictionary comprising named entities and their
corresponding labels. Table A2 in the Appendix illus-
trates the named-entity dictionary. The dictionary con-
tained 3.5 million entries for learning and approximately
1000 entries for tuning. The labels for spoken and written
languages were the same. The data used for training and
evaluation are described in Table 3. For the training data,
the original sentences were morphologically analyzed
and tokenized. Each token was then constructed by tag-
ging named entity tags using the BIO method. This is
specified in Table A3 of the Appendix. In this study, we
did not consider nested named entities.

KorBERT + CRF was used as the base model. The
model parameter configurations are listed in Table 4. More-
over, the number of gradient accumulation steps was set to
four. To facilitate learning and evaluation, we adapted the
selection of source codes within the Hugging Face frame-
work while retaining the default values of the parameters
for those not listed in Table 4. We conducted experiments
with either 146 sublabels or 15 representative labels.

4.2 | Performance of initial teacher and
student models

As described in Section 3.1, we performed initial training
of the teacher and student models. We evaluated the
written and spoken language data against the initialized
models. In this experiment, we used the spoken language

F I GURE 7 Diagram of using named entity dictionary for

training and inference.

TABL E 2 Example of labels in our datasets.

Named entity labels Description

Sublabels and examples

Person (PS) Person’s name

Son Heung-min (PS_NAME), Iron Man (PS_NAME), Zeus
(PS_NAME), etc.

Artifacts (AF) Artifact

Eiffel Tower (AF_CULTURAL_ASSET), Oboe
(AF_MUSICAL_INSTRUMENT), etc.

Organization (OGG) Organization name

Samsung Electronics (OGG_ECONOMY), MIT
(OGG_EDUCATION), etc.

TABL E 3 Data statistics.

Domain No. of training samples No. of test samples

Written 255 624 2320

Spoken 25 177 2323
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performance as the basis for improving the performance
of the corresponding model considering 146 labels.

The performance gain achieved through basic transfer
learning from the written language model surpassed that
resulting from combining written and spoken language
data for training. Nevertheless, we aimed to achieve a
high performance within few epochs. As indicated in
Table 5, although increasing the number of epochs led to
incremental performance improvements, our target per-
formance (92%) was not achieved.

4.3 | Performance of updated teacher
and student models

Different criteria were used for updating the teacher and
student models during simultaneous updates in a single
training step. The student model considered pseudo- and
human-labeled data. Averaging the losses from these two
data sources outperformed the sequential update. Regard-
ing pseudo-labeled data loss LossPLD and human-labeled
data loss LossHLD, this experiment reaffirmed that
enhancements in the student model corresponded to
improvements in the teacher model.

Typically, fewer labels lead to a lower processing
complexity. Instead of 146 labels, we evaluated 15 labels
in the conditional update experiment because the more
labels would require a long computation time to reach
the performance target. When the teacher model was
conditionally updated, the performance improved for
both 15 and 146 labels.

4.4 | Performance of proposed mothed

We conducted a comprehensive evaluation by collectively
implementing all the proposed methods. For the final
experiment, we employed the base model with the highest

performance as both the teacher and student models while
enabling swift learning. Our performance objectives per
domain were distinct, achieving an F1-score of 93% for the
written domain and 92% for the spoken domain. Given
the anticipated challenges of improving the performance
in the spoken language domain owing to labeled data scar-
city, we conservatively set the target for spoken language
NER. However, the difficulty in enhancing NER for spo-
ken language was comparatively low. To achieve a compa-
rable performance to that of the written language domain,
we introduced two strategies: (1) rollback method to retain
the best-performing model and (2) incorporation of named
entity dictionary into learning and reasoning. Finally, we
assessed the optimal performance achieved by the teacher
and student models (Tables 6 and 7).

In Table 8, rollback indicates the utilization of the
rollback method, whereas dic_train indicates the incor-
poration of a named entity dictionary during training and
dic_tunning indicates the use of the named entity dictio-
nary during inference, which fixes the recognition out-
comes with labels from the dictionary. This dictionary
application had a heightened significance in the written
language domain. For instance, entity tenofovir alafena-
mide fumarate (TMM_DRUG) referred to a treatment for
hepatitis B and acquired immunodeficiency syndrome
developed by Gilead Sciences in the United States. Given
its extended length and remote likelihood of being

TAB L E 4 Parameter settings of KorBERT + CRF.

Max. length Learning rate No. of epochs Warmup proportion Batch size

256 5.0e�5 2 or 5 0.1 8

TAB L E 5 Performance of initialized teacher and student models in spoken language domain (%).

Model Trained domain No. of epochs Spoken domain

– WD 2 79.07

Student WD + SD 2 87.69 (+8.62)

20 89.48 (+10.41)

Teacher WD ! SD 2 89.19 (+10.12)

20 89.50 (+10.43)

TABL E 6 Performance of training method for student model

in spoken language domain (%).

Training type
Teacher
model

Student
model

Base
(no pseudo-labeled data)

89.19 87.69

LossPLD ! LossHLD 89.94 (+0.75) 90.17 (+2.48)

Avg (LossPLD, LossHLD) 90.21 (+1.02) 90.48 (+2.79)
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present in the training data, its accurate identification as
an entity name was challenging. In such cases, a named
entity dictionary must be incorporated. Consequently, in
the written language domain, employing a named entity
dictionary during learning can lead to a substantial per-
formance enhancement.

5 | CONCLUSION

This study was aimed to develop a high-performance
NER model adaptable to both written and spoken lan-
guage domains. By leveraging transfer learning, we
employed our specialized KorBERT model as the base to
bridge the domain gap. The devised MPL method enabled
domain adaptation by employing a teacher/student
framework to enhance the quality of pseudo-labeled data.
Our approach averaged the student model loss from
human- and pseudo-labeled data while excluding noisy
pseudo-labeled data under guidance of feedback scores.
As a result, we achieved the target NER performance in
the spoken language domain. Although our model ful-
filled the requirements of the spoken language domain,
further research was conducted to enhance the perfor-
mance in the written language domain. We developed a
rollback method and adjusted the label vector weights in
the named entity dictionary to increase the performance.
The results showed significant enhancements in the
teacher model, achieving F1-scores of 93.5% and 94.16%
in the written and spoken language domains, respec-
tively. These results surpassed those of the baseline
models by 1.89% and 3.38%, demonstrating the

effectiveness of our approach. Overall, combining trans-
fer learning, domain adaptation, and selective feedback-
driven model updates notably enhanced NER across the
written and spoken language domains.

ORCID
Kyoungman Bae https://orcid.org/0000-0001-9007-4027

REFERENCES
1. Named-entity recognition, [last accessed 10 August 2023],

Available at: https://en.wikipedia.org/wiki/Named-entity_
recognition

2. X Ma and E. Hovy, End-to-end sequence labeling via bi-direc-
tional LSTM-CNNs-CRF, arXiv Preprint, 2016, DOI https://doi.
org/10.48550/arXiv.1603.01354.

3. J. Li, A. Sun, J. Han, and C. Li, A survey on deep learning for
named entity recognition, IEEE Trans. Knowl. Data Eng. 34
(2022), 50–70.

4. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. Kuksa, Natural language processing (almost) from
scratch, J. Mach. Learn. Res. 12 (2011), 2493–2537.

5. Y. Lin, S. Yang, V. Stoyanov, and H. Ji, A multi-lingual multi-
task architecture for low-resource sequence labeling, (Proc. 56th
Annual Meeting of the Association for Computational Linguis-
tics, Melbourne, Australia), 2018, pp. 799–809.

6. L. Liu, J. Shang, X. Ren, F. Xu, H. Gui, J. Peng, and J.
Han, Empower sequence labeling with task-aware neural
language model, (Proc. Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans, LA, USA), 2018, pp.
5253–5260.

7. W. Zhou and M. Chen, Learning from noisy labels for entity-
centric information extraction, (Proc. 2021 Conf. Empirical
Methods in Natural Language Processing, Punta Cana,
Dominican Republic), 2021, pp. 5381–5392.

TAB L E 7 Performance of conditional updating teacher model in spoken language domain (%).

No. of labels Training type Teacher Student

15 Base 92.27 90.78

Base + Avg. loss + conditional update 93.14 (+0.87) 93.07 (+2.29)

146 Base 89.19 87.69

Base + Avg. loss 90.21 (+1.02) 90.48 (+2.79)

Base + Avg. loss + conditional update 90.11 (+0.92) 90.62 (+2.93)

T A B L E 8 Performance of final method in spoken and written language domains (%).

Pseudo-labeled data Training type Spoken Written

Target performance 92.00 93.00

Not used WD + SD 90.78 90.01

WD ! SD (base) 92.27 90.12

Used Base + Avg. loss + conditional update (#1) 93.14 (+0.87) 90.69 (+0.57)

#1 + rollback + dict_train (#2) 93.11 (+0.84) 91.34 (+1.22)

#2 + dict_tunning 94.16 (+1.89) 93.5 (+3.38)

66 BAE and LIM

https://orcid.org/0000-0001-9007-4027
https://orcid.org/0000-0001-9007-4027
https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Named-entity_recognition
https://doi.org/10.48550/arXiv.1603.01354
https://doi.org/10.48550/arXiv.1603.01354


8. I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto,
LUKE: Deep contextualized entity representations with entity-
aware self-attention, (Proc. 2020 Conf. Empirical Methods in
Natural Language Processing, Online), 2020, pp. 6442–6454.

9. X. Li, X. Sun, Y. Meng, J. Liang, F. Wu, and J. Li, Dice loss for
data-imbalanced NLP tasks, (Proc. 58th Annual Meeting of the
Association for Computational Linguistics, Online), 2020, pp.
465–476.

10. J. Li, S. Shang, and L. Shao, MetaNER: Named entity recogni-
tion with meta-learning, (Proc. Web Conference, Taipei, Tai-
wan), 2020, pp. 429–440.

11. S. Niu, Y. Liu, J. Wang, and H. Song, A decade survey of trans-
fer learning, IEEE Trans. Artif. Intell. 1 (2020), 151–166.

12. X. Yang, Z. Song, I. King, and Z. Xu, A survey on deep semi-
supervised learning, IEEE Trans. Knowl. Data Eng. 35 (2022),
8934–8954.

13. H. Pham, Z. Dai, Q. Xie, and Q. V. Le, Meta pseudo labels,
(2021 IEEE/CVF Conf. Computer Vision and Pattern Recogni-
tion, Online), 2021, pp. 11557–11568.

14. Y. Wang, S. Mukherjee, H. Chu, Y. Tu, M. Wu, J. Gao, and
A. H. Awadallah, Meta self-training for few-shot neural
sequence labeling, (Proc. 27th ACM SIGKDD Conf. Knowledge
Discovery & Data Mining, Online), 2021, pp. 1737–1747.

15. K. He, R. Mao, T. Gong, C. Li, and E. Cambria, Meta-based
self-training and re-weighting for aspect-based sentiment analy-
sis, IEEE Trans. Affect. Comput. 14 (2022), no. 3, 1–13.

16. S. Ruder, Neural transfer learning for natural language proces-
sing, Ph.D. Dissertation, National Univ. of Ireland, 2019.

17. M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative
adversarial networks, (Proc. 34th International Conf. Machine
Learning, Sydney, Australia), 2017, pp. 214–223.

18. A. Margolis, K. Livescu, and M. Ostendorf, Domain adaptation
with unlabeled data for dialog act tagging, (Proc. 2010 Work-
shop on Domain Adaptation for Natural Language Processing,
Uppsala, Sweden), 2010, pp. 45–52.

19. S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, Domain adap-
tation via transfer component analysis, IEEE Trans. Neural
Netw. 22 (2010), 199–210.

20. X. Glorot, A. Bordes, and Y. Bengio, Domain adaptation for
large-scale sentiment classification: A deep learning approach,
(Proc. 28th International Conf. Machine Learning, Bellevue,
WA, USA), 2011, pp. 513–520.

21. L. Qu, G. Ferraro, L. Zhou, W. Hou, and T. Baldwin, Named
entity recognition for novel types by transfer learning, (Proc.
2016 Conf. Empirical Methods in Natural Language Proces-
sing, Austin, TX, USA), 2016, pp. 899–905.

22. Z. Wang, Y. Qu, L. Chen, J. Shen, W. Zhang, S. Zhang, Y. Gao,
G. Gu, K. Chen, and Y. Yu, Label-aware double transfer learn-
ing for cross-specialty medical named entity recognition, (Proc.
2018 Conf. North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
New Orleans, LA, USA), 2018, pp. 1–15.

23. B. Plank, A. Johannsen, and A. Søgaard, Importance weighting
and unsupervised domain adaptation of POS taggers: A negative
result, (Proc. 2014 Conf. Empirical Methods in Natural Lan-
guage Processing, Doha, Qatar), 2014, pp. 968–973.

24. A. Søgaard and M. Haulrich, Sentence-level instance-weighting
for graph-based and transition-based dependency parsing,

(Proc. 12th International Conf. Parsing Technologies, Dublin,
Ireland), 2011, pp. 43–47.

25. M. van der Wees, A. Bisazza, and C. Monz, Dynamic data
selection for neural machine translation, (Proc. 2017 Conf.
Empirical Methods in Natural Language Processing, Copenha-
gen, Denmark), 2017, pp. 1400–1410.

26. S. Ruder, P. Ghaffari, and J. G. Breslin, Knowledge adaptation:
Teaching to adapt, arXiv Preprint, 2017, DOI https://doi.org/
10.48550/arXiv.1702.02052

27. X. J. Zhu, Semi-supervised learning literature survey. Techni-
cal Report 1530, Computer Sciences, Univ. of Wisconsin-Madi-
son, 2005.

28. D. McClosky, E. Charniak, and M. Johnson, Effective self-train-
ing for parsing, (Proc. Main Conf. Human Language Technol-
ogy Conference of the North American Chapter of the
Association of Computational Linguistics, New York, NY,
USA), 2006, pp. 152–159.

29. O. Sandu, G. Carenini, G. Murray, and R. Ng, Domain adapta-
tion to summarize human conversations, (Proc. 2010 Workshop
on Domain Adaptation for Natural Language Processing, Upp-
sala, Sweden), 2010, pp. 16–22.

30. Y. He and D. Zhou, Self-training from labeled features for senti-
ment analysis, Inf. Process. Manag. 47 (2011), 606–616.

31. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, Attention is all you
need, (31st Conf. Neural Information Processing Systems, Long
Beach, CA, USA), 2017, pp. 5998–6008.

32. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-
training of deep bidirectional transformers for language under-
standing, (Proc. Conf. North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies 2019, Minneapolis, MN, USA), 2019, pp. 4171–
4186.

33. C. Jia, Y. Shi, Q. Yang, and Y. Zhang, Entity enhanced BERT
pre-training for Chinese NER, (Proc. 2020 Conf. Empirical
Methods in Natural Language Processing, Online), 202, pp.
6384–6396.

34. S. Lee, H. Jang, Y. Baik, S. Park, H. Shin, KR-BERT: A small-
scale Korean-specific language model, arXiv Preprint, 2020,
DOI https://doi.org/10.48550/arXiv.2008.03979

35. Y. Gong, L. Mao, and C. Li, Few-shot learning for named entity
recognition based on BERT and two-level model fusion, Data
Intell. 3 (2021), no. 4, 568–577.

36. DH Lee, Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks, (ICML 2013 Work-
shop on Challenges in Representation Learning, Atlanta, GA,
USA), 2013, pp. 896–901.

37. M. U. Ahmed, Y. H. Kim, and P. K. Rhee, EER-ASSL:
combining rollback learning and deep learning for rapid adap-
tive object detection, KSII Trans. Internet Inf. Syst. 14 (2020),
4776–4794.

38. X. Wang, Y. Jiang, N. Bach, T. Wang, Z. Huang, F. Huang,
and K. Tu, Improving named entity recognition by
external context retrieving and cooperative learning,
(Proc. 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conf. Natural Language Processing, Online), 2021, pp.
1800–1812.

BAE and LIM 67

https://doi.org/10.48550/arXiv.1702.02052
https://doi.org/10.48550/arXiv.1702.02052
https://doi.org/10.48550/arXiv.2008.03979


AUTHOR BIOGRAPHIES

Kyoungman Bae received the BS,
MS, and PhD degrees in computer
engineering from the Department of
Computer Engineering, Dong-A Uni-
versity, Busan, Republic of Korea, in
2004, 2006, and 2016, respectively.
Since 2016, he has been working for

the Language Intelligence Research Section at the
Electronics and Telecommunications Research Insti-
tute, Daejeon, Republic of Korea. His research inter-
ests include large language model, natural language
processing, explainable artificial intelligence, and gen-
erative artificial intelligence.

Joon-Ho Lim received the BS and
MS degrees in computer science from
the Korean University, Seoul, Repub-
lic of Korea, in 2002 and 2005,
respectively, and the PhD degree in
computer engineering from Chung-
nam National University, Daejeon,

Republic of Korea, in 2016. From 2005, he worked for
the Electronics and Telecommunications Research
Institute, Daejeon, Rep. of Korea. Since 2022, he has
also been working as the Chief Technology Officer at
Tutorus Labs, an educational artificial intelligence
startup. His research interests include large language
models, artificial intelligence alignment, and
conversation-based tutoring artificial intelligence.

How to cite this article: K. Bae and J.-H. Lim,
Named entity recognition using transfer learning
and small human- and meta-pseudo-labeled
datasets, ETRI Journal 46 (2024), 59–70, DOI 10.
4218/etrij.2023-0321.

68 BAE and LIM

info:doi/10.4218/etrij.2023-0321
info:doi/10.4218/etrij.2023-0321


APPENDIX A.

TAB L E A 1 Fifteen representative labels from datasets used in this study.

Named entity
label Description Subcategories and examples

PERSON Person’s name Son Heung-min, Iron Man, Zeus, etc.

STUDY_FIELD Field of study Social science (FD_SOCIAL_SCIENCE), engineering (FD_SCIENCE), medicine
(FD_MEDICINE), etc.

THEORY Theory, law, or principle Special relativity (TR_SCIENCE), Heinrich’s law (TR_SOCIAL_SCIENCE), etc.

ARTIFACTS Artifact Eiffel Tower (AF_CULTURAL_ASSET), oboe (AF_MUSICAL_INSTRUMENT), etc.

ORGANIZATION Organization name Samsung Electronics (OGG_ECONOMY), MIT (OGG_EDUCATION), etc.

LOCATION Region/location USA (LCP_COUNTRY), New York (LCP_CITY), etc.

CIVILIZATION Civilization/culture Indus culture (CV_NAME), soccer (CV_SPORTS), English (CV_LANGUAGE), etc.

DATE Date August (DT_MONTH), 23 years (DT_YEAR), etc.

TIME Time 12 hours (TI_HOUR), 30 seconds (TI_SECOND), etc.

QUANTITY Quantity 40 years old (QT_AGE), 55 m (QT_LENGTH), etc.

EVENT Specific event/incident/
accident

Opium War (EV_WAR_REVOLUTION), Seoul Olympics (EV_SPORTS), etc.

ANIMAL Animal Spider (AM_INSECT), salmon (AM_FISH), etc.

PLANT Plant and derivatives Apple (PT_FRUIT), cherry tree (PT_TREE), etc.

MATERIAL Material Aluminum (MT_METAL), ammonia (MT_CHEMICAL), etc.

TERM Other entities White (TM_COLOR), square (TM_SHAPE), COVID-19 (TMM_DISEASE), etc.

TAB L E A 2 Example of named entity dictionary.

Named entity dictionary

SonHeungmin = PS_NAME 손흥민 = PS_NAME

SamsungElectronics = OGG_ECONOMY 삼성전자 = OGG_ECONOMY

MIT = OGG_EDUCATION MIT = OGG_EDUCATION

EiffelTower = AF_CULTURAL_ASSET 에펠탑 = AF_CULTURAL_ASSET

Oboe = AF_MUSICAL_INSTRUMENT 오보에 = AF_MUSICAL_INSTRUMENT
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TAB L E A 3 Format of corpus used for training and testing.

경찰은 소래포구 어시장 화재 목격자 3명 진술 확보 (the
police secured statements from three witnesses of the
Sorae Port fish market fire)

경찰/NNG B-OGG_POLITICS Police

은/JX O

소래포구/NNP B-EV_OTHERS Sorae Port

어/NNG I-EV_OTHERS Fish market

시장/NNG I-EV_OTHERS

화재/NNG I-EV_OTHERS Fire

목격/NNG B-CV_POSITION Witnesses

자/XSN B-CV_POSITION

3/SN B-QT_MAN_COUNT Three

명/NNB I-QT_MAN_COUNT

진술/NNG O Secured statements

확보/NNG O

./SF O

B-, beginning of named entity; CV_POSITION, position/position name;
EV_OTHERS, another incident/incident name; I-, middle of named entity;

JX, auxiliary; NNB, dependent noun; NNG, common noun; NNP, proper
noun; OGG_POLITICS, government/administrative agency, public agency,
political agency; QT_MAN_COUNT, number of people; SF, period, question
mark, exclamation mark; SN, number; XSN, noun derived suffix.
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