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Abstract

The Korean language has written (formal) and spoken (phonetic) forms that

differ in their application, which can lead to confusion, especially when deal-

ing with numbers and embedded Western words and phrases. This fact makes

it difficult to automate Korean speech recognition models due to the need for

a complete transcription training dataset. Because such datasets are frequently

constructed using broadcast audio and their accompanying transcriptions, they

do not follow a discrete rule-based matching pattern. Furthermore, these mis-

matches are exacerbated over time due to changing tacit policies. To mitigate

this problem, we introduce a data-driven Korean spoken-to-written transcrip-

tion conversion technique that enhances the automatic conversion of numbers

and Western phrases to improve automatic translation model performance.
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1 | INTRODUCTION

Owing to the incredible advancements in neural networks
models that support end-to-end automatic speech recogni-
tion (ASR), global users now expect high-quality, instanta-
neous speech transcriptions that support enhanced
readability. Conventional speech-to-text training corpora
for ASR models are applied text normalization procedures.
However, because the transcription corpora for end-to-end
ASR methods employs written forms, text normalization is
largely unnecessary. This technical shift has led to the
mixed presence of spoken and written language outputs
within the transcription corpora, which results in inconsis-
tent outcomes. Korean characters are applied as separate
written (formal) and spoken (phonetic) forms. The written
form represents the orthography of Korean words and is

employed in both reading and writing, particularly in offi-
cial documents.

In contrast, the spoken form represents the physical
pronunciation of words and phrases and can be visual-
ized as sound representations using consonants and
vowels. Notably, as with most languages, the spoken
form can differ drastically from the written form, leading
to ambiguities, particularly regarding numbers and
Western words and phrases embedded in the Korean
language. This ambiguity is a major source of errors in
automatic translation models. For example, consider
the phrase “ .” The expression
“ ” in the written form and “ ” in the spoken
form are both valid. However, if the sentence
“ ” is provided to an automatic
translator, it will be translated incorrectly as “show me
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the problem one hundred times,” instead of the intended
“show me problem 100.” Additionally, the term “IBM” is
transcribed in Korean as “ .” However, when the
sentence “ ” is input into an
automatic translator, it often produces the inaccurate
translation, “come to the Ivy M building.” This stems
from the inherent difficulty of machine-learning models
in distinguishing potential double meanings when num-
bers and Western terms are transcribed in the Korean
spoken form. Moreover, when using automatic Korean–
English translation tools with Korean ASR outputs, these
errors occur frequently.

These problems can arise from the construction of an
ASR transcription training corpus. Noting that audio
from broadcasts, lectures, news, and dramas are com-
monly used to create these datasets, their transcriptions
into captions for the hearing-impaired have been used to
pair with the written forms [1, 2]. This process saves time
and costs compared with new manual transcriptions.
However, the creation of captions for hearing-impaired
persons primarily mimic the written form, which can con-
flict with the original spoken form. Moreover, numbers
and Western words and phrases exhibit very low occur-
rence frequencies due to their simplification and variation.
Although these combinations do not affect human seman-
tic speech recognition, they can undermine automatic
translation models based on the various ambiguities.
Therefore, there is a strong demand for a model that
ensures a bountiful and resilient ASR transcription corpus.

Text normalization involves converting written text
into spoken form. Within this paradigm, number normal-
ization primarily relies on a rule-based method as their
reading variations depend on context. Recent advances
have led to a transition from rule-based to end-to-end
modeling using neural networks. Research into Korean
number normalization has included transformers [3] and
end-to-end text normalizers to enhance Korean speech
synthesis [4]. Inverse text normalization (ITN) is more

applicable to Western languages and is often applied to
their ASR post-processing stages.

As such, ITN research has been predominantly con-
ducted in English and other Western multilingual combi-
nations. A hybrid method [5] that combines a neural
network and a rule-based finite-state transducer [6] was
developed to recognize and post-process digit patterns in
speech recognition. Applying an ITN neural network
involves numerical data augmentation [7, 8] to achieve
multilingual ITN. As such, streaming transformer tag-
gers [9] are commonly used to label vocabulary tokens,
which enables stable conversions using weighted finite-
state transducers [6]. However, tagging vocabulary tokens
can lead to errors when the aforementioned contextual
ambiguities are strong. A similar study involved speech-
to-spoken and written text (S2SWT), focusing on generat-
ing parallel spoken and written forms through speech
recognition [10, 11]. In addition to the ITN type, ASR
post-processing has been categorized into the correction
(COR) type. Recent papers on this topic are summarized
in Table 1. However, as indicated, limited research is
available on ITN concept for the Korean language, which
involves conversion from spoken to written form.

To address these challenges, we introduce a Korean
data-driven spoken-to-written (K-STW) transcription
conversion model that automatically converts spoken
forms into transcripts and to standardize the existing cor-
pora into written form, which is the baseline format used
for end-to-end ASR. Unlike speech-dependent ASR,
this approach leverages the advantages of text corpora
and offers the unique benefits of highly consistent tran-
scriptions and enhances automatic translation perfor-
mance. The architecture of the K-STW model is
described in detail in Section 2, and Section 3 describes
the process of constructing the training set for the model.
Sections 4 and 5 provide analyses of the experimental
results and performance, respectively, and conclusions
are drawn in Section 6.

TAB L E 1 ASR post-processing categorization.

Category

Model Database

Language InstituteASR LM Speech Text

COR LAS LSTM LibriSpeech Non English Google [12]

Transformer N-gram/TXL NVIDIA [13]

Transformer TED/AIHub Korean Korea Univ [14]

ITN Transformer + BERT Non Wikipedia/News-C/MuST-C English, German,
Spanish, Italian

Amazon [5]

S2S bi-LSTM Social Media Corpus English, French, Italy,
Spanish

META [7,8]

Transformer Tagger+WFST Non-public data English Microsoft [9]

Transformer Corpus of Spontaneous Japanese(CSJ) Japanese NTT [10]
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2 | PROPOSED K-STW MODEL

Over the past 30 years, the Electronics and Telecommu-
nications Research Institute (ETRI) has substantially con-
tributed to the development of Korean speech datasets.
The ETRI Manual Transcription Rule [15], which is their
dataset construction standard, was designed to incorpo-
rate a wide array of environmental variables into speech
data using diverse tags. Notably, Korean pronunciation
in both spoken and written forms is recorded in a
dual-transcription format. Additional efforts have been
made to accurately transcribe numbers and Western
phrases by considering their various contexts. For
instance, in the written form of “6 am,” numeral six
indicates them time, which should be pronounced as
“ ” in the ordinal form, rather than “ ” in the
cardinal form. To address this particular issue, the
accurate pronunciation “ ” is indicated after “6,” as in
“ ” Simi-
lar dual transcriptions are applied to Western text, as in

“ .” More
examples are shown in Figure 1.

This dual-transcription dataset enables a straightfor-
ward distinction between numbers, Western text, and
other text types. Notably, its structure resembles that of
a machine translation model in which the parallel cor-
pus structure of spoken and written forms facilitates
training. Hence, our data-driven ITN K-STW method
integrates a transformer [16] with an encoder–decoder
architecture to transform input spoken-form tokens into
output written-form varieties. This conversion occurs
through a series of operations facilitated by the trans-
former. The structural synergy of the model enables the
smooth conversion of spoken forms into written text,
which is expected to support transcription and transla-
tion tasks.

Figure 2 illustrates the K-STW model process, show-
ing how spoken-form tokens are processed as inputs and
transformed by the decoder into their corresponding
written-form tokens as outputs. For example, when
input tokens “ ” are fed to the encoder, the
model separately processes them. Among these tokens,
those representing numbers,“ ” and “ ,” are meticu-
lously converted into their written forms, “12” and “10,”
respectively. Hence, they subsequently emerge as the
decoder’s output. This intricate transformation reflects
the model’s seamless translation capability. The training
process of the K-STW model leverages the use ESPnet
machine translation (MT) script [17], which facilitates
parameter and model refinements for performance
optimization.

3 | TEXT REFINEMENT FOR
K-STW MODEL TRAINING

A total of 8.6 M sentences were used to train the K-STW
model, including 4.6 M from the AIHub Korean Lecture
(AIHub-KL) speech dataset [18] and 4 M from the ETRI
Korean Common (ETRI-KC) speech dataset [19]. The

F I GURE 1 Examples of dual transcription: (A) dual structure,

(B) numbers, and (C) Western text.

F I GURE 2 Diagram of the proposed K-STW model.

CHOI ET AL. 129
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AIHub-KL dataset is a publicly and freely available repos-
itory, whereas the ETRI-KC dataset includes purchasing
fees. Both datasets adopt a dual-transcription format
encompassing both written and spoken forms of numbers
and Western (primarily English) text.

The AIHub-KL dataset comprises audio extracted
from broadcasts and online lectures from the Korean
Educational Broadcasting System. These educational
broadcasts cater to students and the public and are
intended for learning purposes. Human non-experts lis-
tened to the content and transcribed it manually. Given
the diverse array of numbers and English text in the con-
tent, this dataset is deemed to be strongly applicable for
K-STW model training. However, transcription errors
occurred due to inconsistent transcription rules applied
during the manual transcription, performed by multiple
individuals. Therefore, text refinement was necessary to
mitigate these discrepancies. Detailed information on the
AIHub-KL dataset is presented in Table 2.

The ETRI-KC dataset provides standardized written-
form tokens that correspond to spoken forms by adhering
to the conventions for the composition of newspaper arti-
cles. This dataset covers a diverse range of news article
topics, including economics, society, science, and culture.
Furthermore, it ensures that the content remains unbi-
ased regardless of field, rendering it highly effective for
model training. The goal of the proposed K-STW model is

to generate written forms from input spoken forms. How-
ever, with end-to-end ASR, output instances may include
a written form as a recognition result. Therefore, assum-
ing only the spoken form as the input is unrealistic.
Instead, during training, we added inputs in written
form, for which the output was designed for retention.
Hence, the numbers and English text are handled cor-
rectly by the K-STW model.

Before training with the AIHub-KL and ETRI-KC
datasets, refinements were performed to ensure that the
model produced consistent results. This process involved
addressing two aspects of dual transcription: number and
English notations, as detailed in Sections 3.1 and 3.2.

3.1 | Number notations

Depending on the context, Arabic numerals “1, 2, 3, …”
can be represented in Sino-Korean words as “ ,
…” in their cardinal form, or in Korean native words as
“ , …” in their ordinal form. Transcription by
individuals who do not pay close attention to these differ-
ent applications often result in errors [20]. For example,
consider the following dual-transcription sentence:
“ ” This sen-
tence can be translated into English as “shall we solve
narrative problem number 1?” If “1” is transcribed using
both native Korean and Sino-Korean terms, semantic
errors are introduced, leading to duplication errors. Ini-
tially, a semantic error arises when the written transcrip-
tion is read as “ ”
This sentence is translated into English as “shall we solve
narrative problem number 1 problem number 1?” This
translation duplicates the first problem, described above.
Hence, the written form should be accurately adjusted
from the spoken form, and during K-STW training, the
spoken-form input tokens, “ ” and “ ,” are mapped to
“1.” To prevent this conflict, the written forms of the
native Korean words in the dual-transcription data must
be modified by revising the dual transcription to
“ ”
Depending on the intended numerical meaning, adjust-
ments are made to the written form to correspond to the
intended spoken meaning.

For Sino-Korean numerals, such as “ , and ,”
we refine the training data to ensure that the written
form provides the correct numerals, “1, 2, and 3,” respec-
tively. Furthermore, for native Korean numbers, we
retain the original native notations for numbers up to
10 in their written form. For numbers 11 and above, the
written form is changed to Arabic numerals to enhance
readability. A threshold of 10 was therefore selected for
convenience and clarity of communication. The criteria

TAB L E 2 Details of AIHub-KL speech dataset.

Classification Time (h) Description of selected data

Elementary
school

960+ 5 subjects: Korean language,
mathematics, social studies,
science, history 640 h of
Korean, 680 h of
mathematics, 570 h of
social studies, 610 h of
science, 550 h of history

Middle school 750+

High school 1340

Vocational
education/
certificate

530+ 10 categories: Korean
language, Korean history,
social studies, science,
mathematics, professional
qualifications, finance,
management, information
technology, technology 50 h
–80 h per category

Others 420+ 10 categories: humanities,
philosophy, literature, art,
science, social studies,
information technology,
education, etc. 30–100 h per
category
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for the numerical refinement in the training dataset are
listed in Table 3.

3.2 | English notation

Owing to the content of online lectures, the correspond-
ing corpus frequently includes terms that indicate units,
such as weight, length, size, etc. Notably, these are often
presented in abbreviated form. In the corpus, unit expres-
sions are presented in written English, encompassing
both their abbreviations and spelled-out forms. However,
the spoken Korean equivalents of these expressions are
manifest in diverse ways. We list the written and spoken
forms of several units in Table 4 and categorize them
according to their abbreviations, spelled-out English
forms, and various Korean forms.

The Korean spoken equivalents of English-written
forms exhibit variations in unit expression. For instance,

“kilogram” has six distinct spoken Korean variations. Con-
sidering Korean spacing rules, further diversity is likely.

In the ETRI-KC dataset, units are consistently repre-
sented in standardized written English forms, predomi-
nantly using abbreviations. By contrast, the AIHub-KL
dataset contains a mixture of abbreviations and spelled-
out English forms. Hence, we adjusted the written
English forms to uniformly present the units as abbrevi-
ated terms. For units not listed in Table 4, we applied a
data-driven approach to maintain consistency.

Despite the existence of various spoken forms of
Korean units, their correlation to written English forms
was established using a dual-transcription corpus. Hence,
multiple Korean-spoken forms can be converted into
uniform English abbreviations, which illustrates the
advantages of using the K-STW model. Uniform nota-
tions offer more stable and consistent conversion results
than rule-based approaches, which require addressing
every possible variation. The K-STW model is based on a
dual-transcription corpus; hence, it offers notable bene-
fits for achieving many-to-one mappings.

Similar to English unit notations, variations
were observed for some English terms appearing in
the corpus, as listed in Table 5. Unlike unit notations,
the Korean spoken form is consistent, whereas consider-
able variations appear in the English-written form. In
this case, the many-to-one mapping maintained by the
K-STW model must be modified into a one-to-many
mapping. This scenario leads to overfitting during model
training. Thus, to mitigate this problem, variations in
the written English forms must be reduced to improve
readability and resolve possible translation errors related
to proper nouns. Similar to how we handled the English
unit notations, we adopted a data-driven approach to
maintain consistency for English terms that are not

TAB L E 3 Text refinement criteria for numbers.

Spoken form
Written
form

Sino-Korean
numbers

…
(1, 2, 3, 4, 5, …)

1, 2, 3, 4, 5, …

Native numbers
(up to 10)

(one, two, three, four,
five, six, seven,
eight, nine, ten)

Same as
spoken
form

Native numbers
(11 and above) …

(eleven, twelve,
thirteen, …)

11, 12, 13, …

TAB L E 4 Classifications of expressions of units by their abbreviations, spelled-out English forms, and Korean pronunciations.

Written form
Spoken form

Abbreviation Spelled-out English Korean

kg kilogram

cm centimeter

TAB L E 5 Classification of English words by selected English term, common variations, and Korean spoken forms.

Written form
Spoken form

Selected English Used English Korean

Wi-Fi Wi-fi, wi-fi, WI-FI

YouTube Youtube, youtube, YOUTUBE

UNESCO Unesco, unesco

K-pop K-Pop, k-pop, K-POP
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explicitly listed in Table 5. To select a consistent English
word, the term with the highest frequency is preferred
from among the alternatives available in the corpus.

4 | EXPERIMENT

Among the corpora used to train the K-STW model, an
analysis of word proportions separated by spaces revealed
that numbers and English text comprised 3.6 and 1.8%
of the data, respectively. Similarly, owing to the shortage
of numbers and English expressions within the test set, we
selected samples to perform a comprehensive performance
evaluation of the K-STW model. To construct this set, 1000
sentences not used for training were randomly chosen
while ensuring that they contained numbers and English
text. Thus, the test set consisted of 30% sentences contain-
ing numbers, 30% sentences containing English text, and
40% sentences containing Korean text only. A diagram of
the K-STWmodel evaluation is shown in Figure 3.

The K-STW model was evaluated as follows:

(1) Apply text refinement as described in Section 3 to the
test set

(2) Apply the spoken form from the refined text as input
to the K-STW model and use the written form as the
reference for model evaluation

(3) Measure the K-STW model accuracy by comparing
its results to the reference

The test set of 1000 sentences contained 15,674 words,
including spaces. In addition, there were 1517 target
tokens that the K-STW model converted from spoken to
written forms. These tokens were categorized into num-
bers and English text, as listed in Table 6. The number of
targets and their ratio per pattern showed that the num-
bers and English text tokens accounted for 63% and 37%
of the converted samples, respectively.

The accuracy of the K-STW model was determined by
calculating the ratio of the number of predicted target
tokens to the total number of target tokens. The predicted

target tokens comprised a combined count of numbers and
English language target tokens. The model accuracy results
are listed in Table 7, where the K-STWmodel demonstrated
an accuracy of 84.91% for number tokens and 76.47% for
English word tokens, resulting in an average accuracy of
80.95%. The lower accuracy for English words was likely
caused by the proportion of English samples within the
training set being smaller than that of the numbers.

5 | TRANSLATION
IMPROVEMENT USING K-STW
MODEL

To evaluate the translation performance of the K-STW
model, 100 sentences containing numbers and English
text were selected from the test set. These sentences were
translated, and we obtained bilingual evaluation under
study (BLEU) [21] and BLEU with representations
(BLUERT) scores [22], as listed in Table 8.

F I GURE 3 Diagram of the K-STW

model evaluation.

TABL E 7 K-STW model accuracy.

Numbers English Average

Accuracy (%) 84.91 76.47 80.95

TABL E 6 Distribution of target and predicted tokens in the

test set.

Number English Total

No. target tokens 956 561 1517

No. predicted tokens 799 429 1228

TABL E 8 Translation performance comparisons of BLEU and

BLEURT scores.

Translation source BLEU BLEURT

Spoken form 0.40 0.20

K-STW output 0.45 0.37

Written form 0.47 0.41

132 CHOI ET AL.
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For the performance comparison, we employed spo-
ken form, the K-STW model output, and the written form
for translation. For each translation source, we used the
DeepL Korean–English translator [23]. To calculate
the BLEU and BLEURT scores, we used a reference
translation provided by a human expert and prepared
three translation references containing numbers and
English text in both spoken and written forms. Using the
K-STW output, the BLEU score was 0.45, which is higher
than the 0.40 for the spoken form and close to 0.47 for
the written form. The BLEURT score was 0.37, which
surpassed the performance of 0.2 for the spoken form.
BLEURT allowed for more sophisticated quality evalua-
tion, enabling a more detailed analysis of performance
differences between models. Therefore, although the
BLEURT score relatively decreased compared with
the BLEU score, it can be concluded that the proposed
model demonstrates better translation quality. The simi-
larity in features between the BLEU and BLEURT scores
suggests a certain degree of consistency between the two
measurement methods. Hence, the K-STW model con-
tributes to improved translation performance.

Table 9 presents three examples of enhanced transla-
tions supported by the K-STW model. Translations from
the spoken form and the K-STW outputs were compared.

In the first example, the target tokens consisted of the
written form “IBM” and spoken form “ ” During
the translation of the spoken form, “ ” was inac-
curately translated to “Ivy M,” with the words “ ”
(IB) and “ ” (M), translated separately. When applying
the K-STW model, the translation was accurate and
retained the intended “IBM” representation.

The second example sentence mirrored the structure
of the initial one, with the target token being “BMW” in
its written form and “ ” in the spoken form. In
addition, the numeric target token “1999” was present.
From the translation of the spoken-form, “ ”
was erroneously broken down into individual compo-
nents “ ” (B), “ ” (double), and “ ” (U),
yielding “BMDoubleU.” In contrast, the application of
the K-STW model ensured an accurate translation. The
numeric target token “1999” was also translated cor-
rectly, even in the spoken form.

In the third example, target token “375” was pre-
sented in its written form, whereas the corresponding
spoken form was “ ” (three hundred seventy-
five). This example illustrates the challenges arising from
contextual influences on spoken forms. When solely
applying the K-STW model, the translation accurately
presented “$37.5 billion” from the written form but erro-
neously generated “$375 billion” from the spoken form.

These examples demonstrate that the K-STW model
enhances translation performance and largely captures
correct meanings.

6 | CONCLUSION

In this study, we proposed a data-driven K-STW model
that automatically transforms spoken-form terms into
their written forms. This model is intended to unify
existing speech datasets into written forms to serve as a
transcription format for end-to-end ASR. Notably, we
addressed the automatic conversion performance for

TAB L E 9 Examples of improved translation by applying the K-STW model.

Translation result

Spoken form I went to the Ivy M Institute in the United States.

K-STW output I went to IBM Research in the United States.

Spoken form BMDoubleU Korea has been running an internship program for overseas
headquarters since one thousand nine hundred and ninety-nine.

K-STW output BMW Korea has been running an internship program at its overseas
headquarters since 1999.

Spoken form We’re an energy-poor country that has to buy every single drop of our $375
billion in oil from foreign countries.

K-STW output We are an energy-poor country that has to buy every drop of our $37.5 billion
in oil from foreign countries.
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numbers and Western (English) text and demonstrated a
method that improves automatic translations. Our
K-STW model provides an average conversion accuracy
of 80.95%, as confirmed by comparative analyses and
examples.

In any Korean text corpus containing Arabic numbers
and English text, characters essential for written-form
symbols, punctuation marks, and superfluous characters
(interjections) often appear. These characteristics can
either enhance or reduce readability, depending on the
context. In future work, we plan to seek the enhance-
ment of both readability and translation performance,
including measures such as reinstating punctuation
marks and omitting interjections.
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