DOI QR코드

DOI QR Code

Picolinic acid, a tryptophan metabolite, triggers cellular senescence by targeting NOS/p38 MAPK/CK1α/MLKL signaling and metabolic exhaustion in red blood cells

  • Sumiah A. Alghareeb (Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University) ;
  • Jawaher Alsughayyir (Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University) ;
  • Mohammad A. Alfhili (Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University)
  • Received : 2024.07.10
  • Accepted : 2025.01.14
  • Published : 2025.05.15

Abstract

Anemia is among the most commonly reported adverse events of anticancer therapy. Picolinic acid (PA), an endogenous metabolite of tryptophan degradation in the kynurenine pathway, is a metal chelator with an anticancer activity. The objective of the current study is to investigate the modulation of red blood cell (RBC) lifespan by PA. Hemolytic and eryptotic markers were evaluated in the presence and absence of PA by photometric and flow cytometric methods. PA demonstrated a dual effect on hemolysis in which it was pro-hemolytic in isotonic media but anti-hemolytic under hypotonic challenge. PA also induced RBC senescence with reduced AChE activity. In addition, treated cells tested positive for annexin-V and Fluo4 and had a significantly lower forward scatter signal. Notably, ATP-replenished cells showed significantly enhanced chemoresistance against PA toxicity, which was also alleviated by ascorbic acid, L-NAME, SB203580, D4476, and necrosulfonamide. Furthermore, an inhibitory effect on PA was observed in incubation media supplemented with isosmotic sucrose but not urea. These data suggest that PA accelerates RBC aging through anticholinesterase activity and exhibits hemolytic and eryptotic properties characterized by phosphatidylserine externalization, Ca2+ mobilization, cell shrinkage, metabolic shutdown, and stimulation of the NOS/p38 MAPK/CK1α/MLKL pathway.

Keywords

Acknowledgement

The authors extend their appreciation to the Researchers Supporting Project (RSPD2025R554), King Saud University, Riyadh, Saudi Arabia.

References

  1. Qiu J, Zhang Y, Yao S, Ren H, Qian M, Hong Q et al (2019) Novel 3,6-dihydroxypicolinic acid decarboxylase-mediated picolinic acid catabolism in Alcaligenes faecalis JQ135. J Bacteriol 201:10.1128/jb.00665-18. https://doi.org/10.1128/JB.00665-18
  2. Zhang HK, Zhang X, Mao BZ, Li Q, He ZH (2004) Alphapicolinic acid, a fungal toxin and mammal apoptosis-inducing agent, elicits hypersensitive-like response and enhances disease resistance in rice. Cell Res 14:27–33. https://doi.org/10.1038/sj.cr.7290199
  3. Chattopadhyay D, Eddouks M (2012) Cellular nutrition and nutritional medicine in diabetes and related complications: an overview. Phytother Manag Diabetes Hypertens 1:3–59. https://doi.org/10.2174/9781608050147112010005
  4. Fernandez-Pol JA, Bono VH Jr, Johnson GS (1977) Control of growth by picolinic acid: differential response of normal and transformed cells. Proc Natl Acad Sci U S A 74:2889–2893. https://doi.org/10.1073/pnas.74.7.2889
  5. Varesio L, Clayton M, Blasi E, Ruffman R, Radzioch D (1990) Picolinic acid, a catabolite of tryptophan, as the second signal in the activation of IFN-gamma-primed macrophages. J Immunol 145:4265–4271. https://doi.org/10.4049/jimmunol.145.12.4265
  6. Abe S, Hu W, Ishibashi H, Hasumi K, Yamaguchi H (2004) Augmented inhibition of Candida albicans growth by murine neutrophils in the presence of a tryptophan metabolite, picolinic acid. J Infect Chemother 10:181–184. https://doi.org/10.1007/s10156-004-0311-9
  7. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM et al (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958. https://doi.org/10.1126/science.272.5270.1955
  8. Fernandez-Pol JA, Klos DJ, Hamilton PD (2001) Antiviral, cytotoxic and apoptotic activities of picolinic acid on human immunodeficiency virus-1 and human herpes simplex virus-2 infected cells. Anticancer Res 21:3773–3776
  9. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337
  10. Pais TF, Appelberg R (2000) Macrophage control of mycobacterial growth induced by picolinic acid is dependent on host cell apoptosis. J Immunol 164:389–397. https://doi.org/10.4049/jimmunol.164.1.389
  11. Ogata S, Inoue K, Iwata K, Okumura K, Taguchi H (2001) Apoptosis induced by picolinic acid-related compounds in HL-60 cells. Biosci Biotechnol Biochem 65:2337–2339. https://doi.org/10.1271/bbb.65.2337
  12. Abbas AH, Mahmood AAR, Tahtamouni LH, Al-Mazaydeh ZA, Rammaha MS, Alsoubani F et al (2021) A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: synthesis, docking study, and anticancer activity. Pharmacia 68:679–692. https://doi.org/10.3897/pharmacia.68.e70654
  13. Föller M, Lang F (2020) Ion transport in eryptosis, the suicidal death of erythrocytes. Front Cell Dev Biol 8:597.https://doi.org/10.3389/fcell.2020.00597
  14. Bissinger R, Bhuyan AAM, Qadri SM, Lang F (2019) Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 286:826–854. https://doi.org/10.1111/febs.14606
  15. Mahmud H, Föller M, Lang F (2008) Suicidal erythrocyte death triggered by cisplatin. Toxicology 249:40–44. https://doi.org/10.1016/j.tox.2008.04.003
  16. Onishchenko AI, Prokopiuk VY, Chumachenko VA, Virych PA, Tryfonyuk LY, Kutsevol NV et al (2023) Hemocompatibility of dextran-graft-polyacrylamide/zinc oxide nanosystems: hemolysis or eryptosis? Nanotechnology 35:035102. https://doi.org/10.1088/1361-6528/ad02a3
  17. Alfhili MA, Lee MH (2021) Flow cytofluorometric analysis of molecular mechanisms of premature red blood cell death. Methods Mol Biol 2326:155–165. https://doi.org/10.1007/978-1-0716-1514-0_11
  18. Mischitelli M, Jemaa M, Almasry M, Faggio C, Lang F (2016) Stimulation of suicidal erythrocyte death by rottlerin. Cell Physiol Biochem 40:558–566. https://doi.org/10.1159/000452569
  19. Cheung AK, Yang AK, Ngai BH, Yu SS, Gao M, Lau PM et al (2015) Quantitative detection of eryptosis in human erythrocytes using tunable resistive pulse sensing and annexin-V-beads. Analyst 140:1337–1348. https://doi.org/10.1039/c4an02079k
  20. Saebo IP, Bjoras M, Franzyk H, Helgesen E, Booth JA (2023) Optimization of the hemolysis assay for the assessment of cytotoxicity. Int J Mol Sci 24:2914. https://doi.org/10.3390/ijms24032914
  21. Alghareeb SA, Alfhili MA, Alsughayyir J (2023) Stimulation of hemolysis and eryptosis by beta-caryophyllene oxide. Life 13:2299. https://doi.org/10.4049/jimmunol.164.1.389
  22. He J, Lin J, Li J, Zhang JH, Sun XM, Zeng CM (2009) Dual effects of Ginkgo biloba leaf extract on human red blood cells. Basic Clin Pharmacol Toxicol 104:138–144. https://doi.org/10.1111/j.1742-7843.2008.00354.x
  23. Alfhili MA, Alyousef AM, Alsughayyir J (2023) Tamoxifen induces eryptosis through calcium accumulation and oxidative stress. Med Oncol 40:333. https://doi.org/10.1007/s12032-023-02205-4
  24. Fernandez-Pol JA, Johnson GS (1977) Selective toxicity induced by picolinic acid in simian virus 40-transformed cells in tissue culture. Cancer Res 37:4276–4279
  25. Leuthauser SW, Oberley LW, Oberley TD (1982) Antitumor activity of picolinic acid in CBA/J mice. J Natl Cancer Inst 68:123–126. https://doi.org/10.1093/jnci/68.1.123
  26. Ruffmann R, Welker RD, Saito T, Chirigos MA, Varesio L (1984) In vivo activation of macrophages but not natural killer cells by picolinic acid (PLA). J Immunopharmacol 6:291–304. https://doi.org/10.3109/08923978409028605
  27. Morita T, Saito K, Takemura M, Maekawa N, Fujigaki S, Fujii H et al (1999) L-tryptophan-kynurenine pathway metabolite 3-hydroxyanthranilic acid induces apoptosis in macrophage-derived cells under pathophysiological conditions. Adv Exp Med Biol 467:559–563. https://doi.org/10.1007/978-1-4615-4709-9_69
  28. Oscarson DW, Van Scoyoc GE, Ahlrichs JL (1981) Effect of poly2-vinylpyridine-N-oxide and sucrose on silicate-induced hemolysis of erythrocytes. J Pharm Sci 70:657–659. https://doi.org/10.1002/jps.2600700620
  29. Kameneva MV, Repko BM, Krasik EF, Perricelli BC, Borovetz HS (2003) Polyethylene glycol additives reduce hemolysis in red blood cell suspensions exposed to mechanical stress. ASAIO J 49:537–542. https://doi.org/10.1097/01.mat.0000084176.30221.cf
  30. Guillen J, Bernabeu A, Shapiro S, Villalain J (2004) Location and orientation of Triclosan in phospholipid model membranes. Eur Biophys J 33:448–453. https://doi.org/10.1007/s00249-003-0378-8
  31. Bernabeu A, Shapiro S, Villalaín J (2002) A MAS-NMR study of the location of (+)-totarol, a diterpenoid bioactive molecule, in phospholipid model membranes. Chem Phys Lipid 119:33–39. https://doi.org/10.1016/S0009-3084(02)00050-6
  32. Rizvi SI, Pandey A, Gupta RK, Pandey KB (2015) Protective effects of bioconjugates of curcumin with nicotinic and picolinic acids on markers of oxidative stress in human erythrocytes. Biologia 70:703–708. https://doi.org/10.1515/biolog-2015-0078
  33. Qadri SM, Bissinger R, Solh Z, Oldenborg PA (2017) Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 31:349–361. https://doi.org/10.1016/j.blre.2017.06.001
  34. Pretorius E, du Plooy JN, Bester J (2016) A comprehensive review on eryptosis. Cell Physiol Biochem 39:1977–2000. https://doi.org/10.1159/000447895
  35. Gupta S, Belle VS, Kumbarakeri Rajashekhar R, Jogi S, Prabhu RK (2018) Correlation of red blood cell acetylcholinesterase enzyme activity with various RBC indices. Indian J Clin Biochem 33:445–449. https://doi.org/10.1007/s12291-017-0691-0
  36. Alghareeb SA, Alsughayyir J, Alfhili MA (2023) Stimulation of hemolysis and eryptosis by alpha-mangostin through Rac1 GTPase and oxidative injury in human red blood cells. Molecules 28:6495. https://doi.org/10.3390/molecules28186495
  37. Danese A, Leo S, Rimessi A, Wieckowski MR, Fiorica F, Giorgi C et al (2021) Cell death as a result of calcium signaling modulation: a cancer-centric prospective. Biochim Biophys Acta (BBA) Mol Cell Res 1868:119061. https://doi.org/10.1016/j.bbamcr.2021.119061
  38. Taleb O, Maammar M, Brumaru D, Bourguignon JJ, Schmitt M, Klein C et al (2012) Xanthurenic acid binds to neuronal G-protein-coupled receptors that secondarily activate cationic channels in the cell line NCB-20. PLoS One 7:e48553. https://doi.org/10.1371/journal.pone.0048553
  39. Gatidis S, Zelenak C, Fajol A, Lang E, Jilani K, Michael D et al (2011) p38 MAPK activation and function following osmotic shock of erythrocytes. Cell Physiol Biochem 28:1279–1286. https://doi.org/10.1159/000335859
  40. Zelenak C, Eberhard M, Jilani K, Qadri SM, Macek B, Lang F (2012) Protein kinase CK1alpha regulates erythrocyte survival. Cell Physiol Biochem 29:171–180. https://doi.org/10.1159/000337598
  41. LaRocca TJ, Stivison EA, Hod EA, Spitalnik SL, Cowan PJ, Randis TM et al (2014) Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. MBio 5:e01251–14. https://doi.org/10.1128/mBio.01251-14
  42. Blohberger J, Kunz L, Einwang D, Berg U, Berg D, Ojeda SR et al (2015) Readthrough acetylcholinesterase (AChE-R) and regulated necrosis: pharmacological targets for the regulation of ovarian functions? Cell Death Dis 6:e1685. https://doi.org/10.1038/cddis.2015.51
  43. El-Mesery M, Seher A, Stuhmer T, Siegmund D, Wajant H (2015) MLN4924 sensitizes monocytes and maturing dendritic cells for TNF-dependent and -independent necroptosis. Br J Pharmacol 172:1222–1236. https://doi.org/10.1111/bph.12998
  44. Steinwascher S, Nugues AL, Schoeneberger H, Fulda S (2015) Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells. Cancer Lett 366:32–43. https://doi.org/10.1016/j.canlet.2015.05.020
  45. Dong W, Zhang M, Zhu Y, Chen Y, Zhao X, Li R et al (2017) Protective effect of NSA on intestinal epithelial cells in a necroptosis model. Oncotarget 8:86726–86735. https://doi.org/10.18632/oncotarget.21418
  46. Stearns DM, Wise JP Sr, Patierno SR, Wetterhahn KE (1995) Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB J 9:1643–1648. https://doi.org/10.1096/fasebj.9.15.8529845
  47. Zylinska L, Lisek M, Guo F, Boczek T (2023) Vitamin C modes of action in calcium-involved signaling in the brain. Antioxidants (Basel) 12:231. https://doi.org/10.3390/antiox12020231
  48. Caramelo C, Riesco A, Outeirino J, Millas I, Blum G, Monzu B et al (1994) Effects of nitric oxide on red blood cells: changes in erythrocyte resistance to hypotonic hemolysis and potassium efflux by experimental maneuvers that decrease nitric oxide. Biochem Biophys Res Commun 199:447–454. https://doi.org/10.1006/bbrc.1994.1249