Acknowledgement
The authors extend their appreciation to the Researchers Supporting Project (RSPD2025R554), King Saud University, Riyadh, Saudi Arabia.
References
- Qiu J, Zhang Y, Yao S, Ren H, Qian M, Hong Q et al (2019) Novel 3,6-dihydroxypicolinic acid decarboxylase-mediated picolinic acid catabolism in Alcaligenes faecalis JQ135. J Bacteriol 201:10.1128/jb.00665-18. https://doi.org/10.1128/JB.00665-18
- Zhang HK, Zhang X, Mao BZ, Li Q, He ZH (2004) Alphapicolinic acid, a fungal toxin and mammal apoptosis-inducing agent, elicits hypersensitive-like response and enhances disease resistance in rice. Cell Res 14:27–33. https://doi.org/10.1038/sj.cr.7290199
- Chattopadhyay D, Eddouks M (2012) Cellular nutrition and nutritional medicine in diabetes and related complications: an overview. Phytother Manag Diabetes Hypertens 1:3–59. https://doi.org/10.2174/9781608050147112010005
- Fernandez-Pol JA, Bono VH Jr, Johnson GS (1977) Control of growth by picolinic acid: differential response of normal and transformed cells. Proc Natl Acad Sci U S A 74:2889–2893. https://doi.org/10.1073/pnas.74.7.2889
- Varesio L, Clayton M, Blasi E, Ruffman R, Radzioch D (1990) Picolinic acid, a catabolite of tryptophan, as the second signal in the activation of IFN-gamma-primed macrophages. J Immunol 145:4265–4271. https://doi.org/10.4049/jimmunol.145.12.4265
- Abe S, Hu W, Ishibashi H, Hasumi K, Yamaguchi H (2004) Augmented inhibition of Candida albicans growth by murine neutrophils in the presence of a tryptophan metabolite, picolinic acid. J Infect Chemother 10:181–184. https://doi.org/10.1007/s10156-004-0311-9
- Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM et al (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958. https://doi.org/10.1126/science.272.5270.1955
- Fernandez-Pol JA, Klos DJ, Hamilton PD (2001) Antiviral, cytotoxic and apoptotic activities of picolinic acid on human immunodeficiency virus-1 and human herpes simplex virus-2 infected cells. Anticancer Res 21:3773–3776
- Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337
- Pais TF, Appelberg R (2000) Macrophage control of mycobacterial growth induced by picolinic acid is dependent on host cell apoptosis. J Immunol 164:389–397. https://doi.org/10.4049/jimmunol.164.1.389
- Ogata S, Inoue K, Iwata K, Okumura K, Taguchi H (2001) Apoptosis induced by picolinic acid-related compounds in HL-60 cells. Biosci Biotechnol Biochem 65:2337–2339. https://doi.org/10.1271/bbb.65.2337
- Abbas AH, Mahmood AAR, Tahtamouni LH, Al-Mazaydeh ZA, Rammaha MS, Alsoubani F et al (2021) A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: synthesis, docking study, and anticancer activity. Pharmacia 68:679–692. https://doi.org/10.3897/pharmacia.68.e70654
- Föller M, Lang F (2020) Ion transport in eryptosis, the suicidal death of erythrocytes. Front Cell Dev Biol 8:597.https://doi.org/10.3389/fcell.2020.00597
- Bissinger R, Bhuyan AAM, Qadri SM, Lang F (2019) Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 286:826–854. https://doi.org/10.1111/febs.14606
- Mahmud H, Föller M, Lang F (2008) Suicidal erythrocyte death triggered by cisplatin. Toxicology 249:40–44. https://doi.org/10.1016/j.tox.2008.04.003
- Onishchenko AI, Prokopiuk VY, Chumachenko VA, Virych PA, Tryfonyuk LY, Kutsevol NV et al (2023) Hemocompatibility of dextran-graft-polyacrylamide/zinc oxide nanosystems: hemolysis or eryptosis? Nanotechnology 35:035102. https://doi.org/10.1088/1361-6528/ad02a3
- Alfhili MA, Lee MH (2021) Flow cytofluorometric analysis of molecular mechanisms of premature red blood cell death. Methods Mol Biol 2326:155–165. https://doi.org/10.1007/978-1-0716-1514-0_11
- Mischitelli M, Jemaa M, Almasry M, Faggio C, Lang F (2016) Stimulation of suicidal erythrocyte death by rottlerin. Cell Physiol Biochem 40:558–566. https://doi.org/10.1159/000452569
- Cheung AK, Yang AK, Ngai BH, Yu SS, Gao M, Lau PM et al (2015) Quantitative detection of eryptosis in human erythrocytes using tunable resistive pulse sensing and annexin-V-beads. Analyst 140:1337–1348. https://doi.org/10.1039/c4an02079k
- Saebo IP, Bjoras M, Franzyk H, Helgesen E, Booth JA (2023) Optimization of the hemolysis assay for the assessment of cytotoxicity. Int J Mol Sci 24:2914. https://doi.org/10.3390/ijms24032914
- Alghareeb SA, Alfhili MA, Alsughayyir J (2023) Stimulation of hemolysis and eryptosis by beta-caryophyllene oxide. Life 13:2299. https://doi.org/10.4049/jimmunol.164.1.389
- He J, Lin J, Li J, Zhang JH, Sun XM, Zeng CM (2009) Dual effects of Ginkgo biloba leaf extract on human red blood cells. Basic Clin Pharmacol Toxicol 104:138–144. https://doi.org/10.1111/j.1742-7843.2008.00354.x
- Alfhili MA, Alyousef AM, Alsughayyir J (2023) Tamoxifen induces eryptosis through calcium accumulation and oxidative stress. Med Oncol 40:333. https://doi.org/10.1007/s12032-023-02205-4
- Fernandez-Pol JA, Johnson GS (1977) Selective toxicity induced by picolinic acid in simian virus 40-transformed cells in tissue culture. Cancer Res 37:4276–4279
- Leuthauser SW, Oberley LW, Oberley TD (1982) Antitumor activity of picolinic acid in CBA/J mice. J Natl Cancer Inst 68:123–126. https://doi.org/10.1093/jnci/68.1.123
- Ruffmann R, Welker RD, Saito T, Chirigos MA, Varesio L (1984) In vivo activation of macrophages but not natural killer cells by picolinic acid (PLA). J Immunopharmacol 6:291–304. https://doi.org/10.3109/08923978409028605
- Morita T, Saito K, Takemura M, Maekawa N, Fujigaki S, Fujii H et al (1999) L-tryptophan-kynurenine pathway metabolite 3-hydroxyanthranilic acid induces apoptosis in macrophage-derived cells under pathophysiological conditions. Adv Exp Med Biol 467:559–563. https://doi.org/10.1007/978-1-4615-4709-9_69
- Oscarson DW, Van Scoyoc GE, Ahlrichs JL (1981) Effect of poly2-vinylpyridine-N-oxide and sucrose on silicate-induced hemolysis of erythrocytes. J Pharm Sci 70:657–659. https://doi.org/10.1002/jps.2600700620
- Kameneva MV, Repko BM, Krasik EF, Perricelli BC, Borovetz HS (2003) Polyethylene glycol additives reduce hemolysis in red blood cell suspensions exposed to mechanical stress. ASAIO J 49:537–542. https://doi.org/10.1097/01.mat.0000084176.30221.cf
- Guillen J, Bernabeu A, Shapiro S, Villalain J (2004) Location and orientation of Triclosan in phospholipid model membranes. Eur Biophys J 33:448–453. https://doi.org/10.1007/s00249-003-0378-8
- Bernabeu A, Shapiro S, Villalaín J (2002) A MAS-NMR study of the location of (+)-totarol, a diterpenoid bioactive molecule, in phospholipid model membranes. Chem Phys Lipid 119:33–39. https://doi.org/10.1016/S0009-3084(02)00050-6
- Rizvi SI, Pandey A, Gupta RK, Pandey KB (2015) Protective effects of bioconjugates of curcumin with nicotinic and picolinic acids on markers of oxidative stress in human erythrocytes. Biologia 70:703–708. https://doi.org/10.1515/biolog-2015-0078
- Qadri SM, Bissinger R, Solh Z, Oldenborg PA (2017) Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 31:349–361. https://doi.org/10.1016/j.blre.2017.06.001
- Pretorius E, du Plooy JN, Bester J (2016) A comprehensive review on eryptosis. Cell Physiol Biochem 39:1977–2000. https://doi.org/10.1159/000447895
- Gupta S, Belle VS, Kumbarakeri Rajashekhar R, Jogi S, Prabhu RK (2018) Correlation of red blood cell acetylcholinesterase enzyme activity with various RBC indices. Indian J Clin Biochem 33:445–449. https://doi.org/10.1007/s12291-017-0691-0
- Alghareeb SA, Alsughayyir J, Alfhili MA (2023) Stimulation of hemolysis and eryptosis by alpha-mangostin through Rac1 GTPase and oxidative injury in human red blood cells. Molecules 28:6495. https://doi.org/10.3390/molecules28186495
- Danese A, Leo S, Rimessi A, Wieckowski MR, Fiorica F, Giorgi C et al (2021) Cell death as a result of calcium signaling modulation: a cancer-centric prospective. Biochim Biophys Acta (BBA) Mol Cell Res 1868:119061. https://doi.org/10.1016/j.bbamcr.2021.119061
- Taleb O, Maammar M, Brumaru D, Bourguignon JJ, Schmitt M, Klein C et al (2012) Xanthurenic acid binds to neuronal G-protein-coupled receptors that secondarily activate cationic channels in the cell line NCB-20. PLoS One 7:e48553. https://doi.org/10.1371/journal.pone.0048553
- Gatidis S, Zelenak C, Fajol A, Lang E, Jilani K, Michael D et al (2011) p38 MAPK activation and function following osmotic shock of erythrocytes. Cell Physiol Biochem 28:1279–1286. https://doi.org/10.1159/000335859
- Zelenak C, Eberhard M, Jilani K, Qadri SM, Macek B, Lang F (2012) Protein kinase CK1alpha regulates erythrocyte survival. Cell Physiol Biochem 29:171–180. https://doi.org/10.1159/000337598
- LaRocca TJ, Stivison EA, Hod EA, Spitalnik SL, Cowan PJ, Randis TM et al (2014) Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. MBio 5:e01251–14. https://doi.org/10.1128/mBio.01251-14
- Blohberger J, Kunz L, Einwang D, Berg U, Berg D, Ojeda SR et al (2015) Readthrough acetylcholinesterase (AChE-R) and regulated necrosis: pharmacological targets for the regulation of ovarian functions? Cell Death Dis 6:e1685. https://doi.org/10.1038/cddis.2015.51
- El-Mesery M, Seher A, Stuhmer T, Siegmund D, Wajant H (2015) MLN4924 sensitizes monocytes and maturing dendritic cells for TNF-dependent and -independent necroptosis. Br J Pharmacol 172:1222–1236. https://doi.org/10.1111/bph.12998
- Steinwascher S, Nugues AL, Schoeneberger H, Fulda S (2015) Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells. Cancer Lett 366:32–43. https://doi.org/10.1016/j.canlet.2015.05.020
- Dong W, Zhang M, Zhu Y, Chen Y, Zhao X, Li R et al (2017) Protective effect of NSA on intestinal epithelial cells in a necroptosis model. Oncotarget 8:86726–86735. https://doi.org/10.18632/oncotarget.21418
- Stearns DM, Wise JP Sr, Patierno SR, Wetterhahn KE (1995) Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB J 9:1643–1648. https://doi.org/10.1096/fasebj.9.15.8529845
- Zylinska L, Lisek M, Guo F, Boczek T (2023) Vitamin C modes of action in calcium-involved signaling in the brain. Antioxidants (Basel) 12:231. https://doi.org/10.3390/antiox12020231
- Caramelo C, Riesco A, Outeirino J, Millas I, Blum G, Monzu B et al (1994) Effects of nitric oxide on red blood cells: changes in erythrocyte resistance to hypotonic hemolysis and potassium efflux by experimental maneuvers that decrease nitric oxide. Biochem Biophys Res Commun 199:447–454. https://doi.org/10.1006/bbrc.1994.1249