Acknowledgement
The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certifcate/nkLw5z
References
- Saeed S et al (2023) Idiopathic pulmonary fibrosis in a young adult: a rare presentation and management challenges. Cureus 15:e43010 https://doi.org/10.7759/cureus.43010
- Yu QY, Tang XX (2022) Irreversibility of pulmonary fibrosis. Aging Dis 13:73–86 https://doi.org/10.14336/AD.2021.0730
- Maher TM et al (2021) Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res 22:197 https://doi.org/10.1186/s12931-021-01791-z
- Fernandez Fabrellas E et al (2018) Prognosis and follow-up of idiopathic pulmonary fibrosis. Med Sci (Basel) 6:51 https://doi.org/10.3390/medsci6020051
- Diamantopoulos A et al (2018) The burden of illness of idiopathic pulmonary fibrosis: a comprehensive evidence review. Pharmacoeconomics 36:779–807 https://doi.org/10.1007/s40273-018-0631-8
- Lee JH et al (2023) Epidemiology and comorbidities in idiopathic pulmonary fibrosis: a nationwide cohort study. BMC Pulm Med 23:54 https://doi.org/10.1186/s12890-023-02340-8
- Brandt JP, Gerriets V (2023) Bleomycin. In: StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Valerie Gerriets declares no relevant financial relationships with ineligible companies
- Azambuja E et al (2005) Bleomycin lung toxicity: who are the patients with increased risk? Pulm Pharmacol Ther 18:363–366 https://doi.org/10.1016/j.pupt.2005.01.007
- Sleijfer S (2001) Bleomycin-induced pneumonitis. Chest 120:617–624 https://doi.org/10.1378/chest.120.2.617
- O'Sullivan JM et al (2003) Predicting the risk of bleomycin lung toxicity in patients with germ-cell tumours. Ann Oncol 14:91–96 https://doi.org/10.1093/annonc/mdg020
- Peng R et al (2013) Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for 'active' disease. PLoS One 8:e59348 https://doi.org/10.1371/journal.pone.0059348
- Fernandez IE, Eickelberg O (2012) The impact of TGF-beta on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc 9:111–116 https://doi.org/10.1513/pats.201203-023AW
- Hogan BL et al (2014) Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15:123–138 https://doi.org/10.1016/j.stem.2014.07.012
- Salton F, Volpe MC, Confalonieri M (2019) Epithelial(-)mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis. Medicina (Kaunas) 55:83 https://doi.org/10.3390/medicina55040083
- Jolly MK et al (2018) Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev Dyn 247:346–358 https://doi.org/10.1002/dvdy.24541
- Acloque H et al (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119:1438–1449 https://doi.org/10.1172/JCI38019
- Maira SM et al (2001) Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294:374–380 https://doi.org/10.1126/science.1062030
- Ye Z, Hu Y (2021) TGF-beta1: gentlemanly orchestrator in idiopathic pulmonary fibrosis (review). Int J Mol Med 48:132 https://doi.org/10.3892/ijmm.2021.4965
- Wang J et al (2022) Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B 12:18–32 https://doi.org/10.1016/j.apsb.2021.07.023
- Liu X et al (2018) Carboxyl-terminal modulator protein ameliorates pathological cardiac hypertrophy by suppressing the protein kinase B signaling pathway. J Am Heart Assoc 7:e008654 https://doi.org/10.1161/JAHA.118.008654
- Chen N et al (2016) Carboxy-terminal modulator protein attenuated extracellular matrix deposit by inhibiting phospho-Akt, TGFbeta1 and alpha-SMA in kidneys of diabetic mice. Biochem Biophys Res Commun 474:753–760 https://doi.org/10.1016/j.bbrc.2016.05.032
- Li H et al (2017) Posttreatment with Protectin DX ameliorates bleomycin-induced pulmonary fibrosis and lung dysfunction in mice. Sci Rep 7:46754 https://doi.org/10.1038/srep46754
- Geng Y et al (2022) PEAR1 regulates expansion of activated fibroblasts and deposition of extracellular matrix in pulmonary fibrosis. Nat Commun 13:7114 https://doi.org/10.1038/s41467-022-34870-w
- Kim YS et al (2019) The anti-fibrotic effects of CG-745, an HDAC inhibitor, in bleomycin and PHMG-induced mouse models. Molecules 24:2792 https://doi.org/10.3390/molecules24152792
- Cowley PM, Roberts CR, Baker AJ (2019) Monitoring the health status of mice with bleomycin-induced lung injury by using body condition scoring. Comp Med 69:95–102 https://doi.org/10.30802/AALAS-CM-18-000060
- Hubner RH et al (2008) Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques 44:507–511 https://doi.org/10.2144/000112729
- Vo TT et al (2023) AXL is required for hypoxia-mediated hypoxia-inducible factor-1 alpha function in glioblastoma. Toxicol Res 39:669–679 https://doi.org/10.1007/s43188-023-00195-z
- Chen KJ et al (2016) Bleomycin (BLM) induces epithelial-tomesenchymal transition in cultured A549 cells via the TGF-beta/Smad signaling pathway. J Cancer 7:1557–1564 https://doi.org/10.7150/jca.15566
- Rao LZ et al (2021) Correction: IL-24 deficiency protects mice against bleomycin-induced pulmonary fibrosis by repressing IL-4-induced M2 program in macrophages. Cell Death Differ 28:2989 https://doi.org/10.1038/s41418-020-00721-8
- Kim SN et al (2010) Dose-response effects of bleomycin on inflammation and pulmonary fibrosis in mice. Toxicol Res 26:217–222 https://doi.org/10.5487/TR.2010.26.3.217
- Wolters PJ, Collard HR, Jones KD (2014) Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol 9:157–179 https://doi.org/10.1146/annurev-pathol-012513-104706
- Smith ML (2022) The histologic diagnosis of usual interstitial pneumonia of idiopathic pulmonary fibrosis. Where we are and where we need to go. Mod Pathol 35(Suppl 1):8–14 https://doi.org/10.1038/s41379-021-00889-5
- Selman M, Pardo A (2014) Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. An integral model. Am J Respir Crit Care Med 189:1161–1172 https://doi.org/10.1164/rccm.201312-2221PP
- Keshavan S et al (2023) Comparing species-different responses in pulmonary fibrosis research: current understanding of in vitro lung cell models and nanomaterials. Eur J Pharm Sci 183:106387 https://doi.org/10.1016/j.ejps.2023.106387
- Moeller A et al (2008) The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 40:362–382 https://doi.org/10.1016/j.biocel.2007.08.011
- Ju N et al (2022) Prevention of bleomycin-induced pulmonary fibrosis by a RANKL peptide in mice. Sci Rep 12:12474 https://doi.org/10.1038/s41598-022-16843-7
- Chang J et al (2021) Vitamin D suppresses bleomycin-induced pulmonary fibrosis by targeting the local renin-angiotensin system in the lung. Sci Rep 11:16525 https://doi.org/10.1038/s41598-021-96152-7
- Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405 https://doi.org/10.1016/j.cell.2017.04.001
- Parcellier A et al (2009) The Carboxy-Terminal Modulator Protein (CTMP) regulates mitochondrial dynamics. PLoS One 4:e5471 https://doi.org/10.1371/journal.pone.0005471
- Regev-Rudzki N, Yogev O, Pines O (2008) The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization. J Cell Sci 121:2423–2431 https://doi.org/10.1242/jcs.029207
- Holm Nielsen S et al (2019) Serological assessment of activated fibroblasts by alpha-smooth muscle actin (alpha-SMA): a noninvasive biomarker of activated fibroblasts in lung disorders. Transl Oncol 12:368–374 https://doi.org/10.1016/j.tranon.2018.11.004
- Tsitoura E et al (2021) Collagen 1a1 expression by airway macrophages increases in fibrotic ILDs and is associated with FVC decline and increased mortality. Front Immunol 12:645548 https://doi.org/10.3389/fimmu.2021.645548
- Frangogiannis N (2020) Transforming growth factor-beta in tissue fibrosis. J Exp Med 217:e20190103
- Kurowska N et al (2022) Differences in the expression patterns of TGFbeta isoforms and associated genes in astrocytic brain Tumors. Cancers (Basel) 14:1876 https://doi.org/10.3390/cancers14081876
- Aschner Y, Downey GP (2016) Transforming growth factor-beta: master regulator of the respiratory system in health and disease. Am J Respir Cell Mol Biol 54:647–655 https://doi.org/10.1165/rcmb.2015-0391TR
- Morikawa M, Derynck R, Miyazono K (2016) TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 8:a021873
- Wu L et al (2017) Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-beta1/Smads and PI3K/Akt pathways. Sci Rep 7:9289 https://doi.org/10.1038/s41598-017-09673-5
- Runyan CE, Schnaper HW, Poncelet AC (2004) The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-beta1. J Biol Chem 279:2632–2639 https://doi.org/10.1074/jbc.M310412200
- Lee KI et al (2020) Ultrafine silicon dioxide nanoparticles cause lung epithelial cells apoptosis via oxidative stress-activated PI3K/Akt-mediated mitochondria- and endoplasmic reticulum stressdependent signaling pathways. Sci Rep 10:9928 https://doi.org/10.1038/s41598-020-66644-z
- Kral JB et al (2016) Sustained PI3K activation exacerbates BLM-induced Lung Fibrosis via activation of pro-inflammatory and profibrotic pathways. Sci Rep 6:23034 https://doi.org/10.1038/srep23034
- Xia H et al (2010) Pathologic caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis. Am J Pathol 176:2626–2637 https://doi.org/10.2353/ajpath.2010.091117
- Molyneaux PL et al (2017) Host-microbial interactions in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 195:1640–1650 https://doi.org/10.1164/rccm.201607-1408OC
- Molyneaux PL et al (2014) The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 190:906–913 https://doi.org/10.1164/rccm.201403-0541OC
- Han MK et al (2014) Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med 2:548–556 https://doi.org/10.1016/S2213-2600(14)70069-4
- Sheng G et al (2020) Viral infection increases the risk of idiopathic pulmonary fibrosis: a meta-analysis. Chest 157:1175–1187 https://doi.org/10.1016/j.chest.2019.10.032
- Meadors M, Floyd J, Perry MC (2006) Pulmonary toxicity of chemotherapy. Semin Oncol 33:98–105 https://doi.org/10.1053/j.seminoncol.2005.11.005
- Garcia-Sancho C et al (2011) Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis. Respir Med 105:1902-1907 https://doi.org/10.1016/j.rmed.2011.08.022