DOI QR코드

DOI QR Code

Sargassum horneri extract attenuates high-dose acetaminophen-induced hepatotoxicity by enhancing the antioxidant activity and inhibiting acetaminophen activation in the mouse liver

  • Jiwon Hwang (College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University) ;
  • Hyo Jin Kim (Department of Food Bioengineering, Jeju National University) ;
  • Yubin Song (College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University) ;
  • Young‑Ok Son (Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University) ;
  • Youngheun Jee (Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University) ;
  • Hyun Jung Kim (Department of Food Bioengineering, Jeju National University) ;
  • Jin‑Hyeon Kim (JNBIO Co., Ltd) ;
  • Young‑Suk Jung (Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University) ;
  • Doyoung Kwon (College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University)
  • Received : 2024.11.12
  • Accepted : 2025.01.07
  • Published : 2025.05.15

Abstract

Sargassum horneri is an edible brown seaweed used as traditional medicine in various East Asian countries, such as China and Korea. Its therapeutic effects, including antioxidant and anti-inflammatory activities, have been reported in animal models of respiratory diseases and allergic disorders. However, its specific effects on liver health remain ambiguous. Therefore, in this study, we aimed to examine the effects of S. horneri extract (SHE) on acetaminophen (APAP)-induced hepatotoxicity, a common clinical cause of drug-induced liver injury. SHE-pretreated male mice were injected with a high dose of APAP. SHE alleviated APAP-induced liver injury and inhibited lipid peroxidation and glutathione (GSH) depletion. It also enhanced the hepatic total antioxidant capacity in APAP-treated mice, exhibiting direct radical scavenging activity against APAP-induced oxidative stress. Levels of the hepatic antioxidant enzymes, superoxide dismutase-1/2 and GSH peroxidase 1, were unaffected by SHE; however, catalase levels decreased by APAP were restored by the extract. Protein levels of the APAP-metabolizing enzymes, uridine 5'-diphospho-glucuronosyltransferase 1a6, sulfotransferase 1a1, GSH S-transferase a1, cytochrome P450 (Cyp)-1a2, Cyp2e1, and Cyp3a, were unaffected; however, Cyp1a activity was reduced by SHE. Plasma concentrations of APAP-GSH and APAP-cysteine conjugates were reduced by SHE in APAP-treated mice, indicating that SHE alleviates APAP hepatotoxicity by inhibiting Cyp1a-mediated metabolic activation of APAP. In conclusion, our results suggest that the increase in cellular antioxidant capacity and inhibition of APAP bioactivation are possible mechanisms underlying the hepatoprotective effects of SHE against high-dose APAP-induced acute liver injury.

Keywords

Acknowledgement

This study was supported by the Basic Science Research Program (2019R1A6A1A10072987) and Regional Innovation Strategy (RIS; 2023RIS-009) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE).

References

  1. Andrade RJ, Chalasani N, Björnsson ES, Suzuki A, Kullak-Ublick GA, Watkins PB, Devarbhavi H, Merz M, Lucena MI, Kaplowitz N, Aithal GP (2019) Drug-induced liver injury. Nat Rev Dis Primers 5:58. https://doi.org/10.1038/s41572-019-0105-0
  2. McGill MR, Jaeschke H (2019) Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis 1865:1031–1039. https://doi.org/10.1016/j.bbadis.2018.08.037
  3. McGill MR, Jaeschke H (2013) Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res 30:2174–2187. https://doi.org/10.1007/s11095-013-1007-6
  4. Gomez-Zavaglia A, Prieto Lage MA, Jimenez-Lopez C, Mejuto JC, Simal-Gandara J (2019) The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants (Basel) 8:406. https://doi.org/10.3390/antiox8090406
  5. Khan F, Jeong GJ, Khan MSA, Tabassum N, Kim YM (2022) Seaweed-derived phlorotannins: a review of multiple biological roles and action mechanisms. Mar Drugs 20:384. https://doi.org/10.3390/md20060384
  6. Herath KHINM, Kim HJ, Lee JH, Je JG, Yu HS, Jeon YJ, Kim HJ, Jee Y (2021) Sargassum horneri (Turner) C. Agardh containing polyphenols attenuates particulate matter-induced inflammatory response by blocking TLR-mediated MYD88-dependent MAPK signaling pathway in MLE-12 cells. J Ethnopharmacol 265:113340. https://doi.org/10.1016/j.jep.2020.113340
  7. Sanjeewa KKA, Jayawardena TU, Lee HG, Herath KHINM, Jee Y, Jeon YJ (2019) The protective effect of Sargassum horneri against particulate matter-induced inflammation in lung tissues of an in vivo mouse asthma model. Food Funct 10:7995–8004. https://doi.org/10.1039/c9fo02068c
  8. Herath KHINM, Kim HJ, Mihindukulasooriya SP, Kim A, Kim HJ, Jeon YJ, Jee Y (2020) Sargassum horneri extract containing mojabanchromanol attenuates particulate matter exacerbated allergic asthma through reduction of Th2 and Th17 response in mice. Environ Pollut 265:114094. https://doi.org/10.1016/j.envpol.2020.114094
  9. Nagahawatta DP, Kim HS, Jee YH, Jayawardena TU, Ahn G, Namgung J, Yeo IK, Sanjeewa KKA, Jeon YJ (2021) Sargachromenol isolated from Sargassum horneri inhibits particulate matter-induced inflammation in macrophages through toll-like receptor-mediated cell signaling pathways. Mar Drugs 20:28. https://doi.org/10.3390/md20010028
  10. Kim HJ, Yang J, Herath KHINM, Jeon YJ, Son YO, Kwon D, Kim HJ, Jee Y (2023) Oral administration of Sargassum horneri suppresses particulate matter-induced oxidative DNA damage in alveolar macrophages of allergic airway inflammation: relevance to PM-mediated M1/M2 AM polarization. Mol Nutr Food Res 67:e2300462. https://doi.org/10.1002/mnfr.202300462
  11. Lee JH, Kim HJ, Jee Y, Jeon YJ, Kim HJ (2020) Antioxidant potential of Sargassum horneri extract against urban particulate matter-induced oxidation. Food Sci Biotechnol 29:855–865. https://doi.org/10.1007/s10068-019-00729-y
  12. Fernando IPS, Dias MKHM, Madusanka DMD, Han EJ, Kim MJ, Jeon YJ, Lee K, Cheong SH, Han YS, Park SR, Ahn G (2020) Human keratinocyte UVB-protective effects of a low molecular weight fucoidan from Sargassum horneri purified by step gradient ethanol precipitation. Antioxidants (Basel) 9:340. https://doi.org/10.3390/antiox9040340
  13. Mihindukulasooriya SP, Dinh DTT, Herath KHINM, Kim HJ, Han EJ, Cho J, Ko MO, Jeon YJ, Ahn G, Jee Y (2022) Sargassum horneri extract containing polyphenol alleviates DNCB-induced atopic dermatitis in NC/Nga mice through restoring skin barrier function. Histol Histopathol 37:839–852. https://doi.org/10.14670/HH-18-473
  14. Han EJ, Fernando IPS, Kim HS, Lee DS, Kim A, Je JG, Seo MJ, Jee YH, Jeon YJ, Kim SY, Ahn G (2021) (-)-Loliolide isolated from Sargassum horneri suppresses oxidative stress and inflammation by activating Nrf2/HO-1 signaling in IFN-γ/TNFα-stimulated HaCaT keratinocytes. Antioxidants (Basel) 10:856. https://doi.org/10.3390/antiox10060856
  15. Kirindage KGIS, Jayasinghe AMK, Han EJ, Jee Y, Kim HJ, Do SG, Fernando IPS, Ahn G (2022) Fucosterol isolated from dietary brown alga Sargassum horneri protects TNF-α/IFN-γ-stimulated human dermal fibroblasts via regulating Nrf2/HO-1 and NF-κB/MAPK pathways. Antioxidants (Basel) 11:1429. https://doi.org/10.3390/antiox11081429
  16. Sanjeewa KKA, Jayawardena TU, Kim SY, Kim HS, Ahn G, Kim J, Jeon YJ (2019) Fucoidan isolated from invasive Sargassum horneri inhibits LPS-induced inflammation via blocking NF-κB and MAPK pathways. Algal Res 41:101561. https://doi.org/10.1016/j.algal.2019.101561
  17. Han EJ, Jayawardena TU, Jang JH, Fernando IPS, Jee Y, Jeon YJ, Lee DS, Lee JM, Yim MJ, Wang L, Kim HS, Ahn G (2021) Sargachromenol purified from Sargassum horneri inhibits inflammatory responses via activation of Nrf2/HO-1 signaling in LPSstimulated macrophages. Mar Drugs 19:497. https://doi.org/10.3390/md19090497
  18. Ko W, Lee H, Kim N, Jo HG, Woo ER, Lee K, Han YS, Park SR, Ahn G, Cheong SH, Lee DS (2021) The anti-oxidative and antineuroinflammatory effects of Sargassum horneri by heme oxygenase-1 induction in BV2 and HT22 cells. Antioxidants (Basel) 10:859. https://doi.org/10.3390/antiox10060859
  19. Murakami S, Hirazawa C, Ohya T, Yoshikawa R, Mizutani T, Ma N, Moriyama M, Ito T, Matsuzaki C (2021) The edible brown seaweed Sargassum horneri (Turner) C. Agardh ameliorates highfat diet-induced obesity, diabetes, and hepatic steatosis in mice. Nutrients 13:551. https://doi.org/10.3390/nu13020551
  20. Kang MC, Lee HG, Lee SH, Song KM, Kim HS, Kim S, Choi YS, Jeon YJ (2022) Sargassum norneri inhibits fat accumulation via up-regulation of thermogenesis in obese mice. J Funct Food 92:105022. https://doi.org/10.1016/j.jff.2022.105022
  21. Airanthi MK, Sasaki N, Iwasaki S, Baba N, Abe M, Hosokawa M, Miyashita K (2011) Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver. J Agric Food Chem 59:4156–4163. https://doi.org/10.1021/jf104643b
  22. Kim YC, Na JD, Kwon DY, Park JH (2018) Silymarin prevents acetaminophen-induced hepatotoxicity via up-regulation of the glutathione conjugation capacity in mice. J Funct Foods 49:235–240. https://doi.org/10.1016/j.jff.2018.08.025
  23. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153. https://doi.org/10.1016/j.bbagen.2012.09.008
  24. Patten CJ, Thomas PE, Guy RL, Lee M, Gonzalez FJ, Guengerich FP, Yang CS (1993) Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem Res Toxicol 6:511–518. https://doi.org/10.1021/tx00034a019
  25. Zaher H, Buters JT, Ward JM, Bruno MK, Lucas AM, Stern ST, Cohen SD, Gonzalez FJ (1998) Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol Appl Pharmacol 152:193–199. https://doi.org/10.1006/taap.1998.8501
  26. Bao Y, Wang P, Shao X, Zhu J, Xiao J, Shi J, Zhang L, Zhu HJ, Ma X, Manautou JE, Zhong XB (2020) Acetaminophen-induced liver injury alters expression and activities of cytochrome P450 enzymes in an age-dependent manner in mouse liver. Drug Metab Dispos 48:326–336. https://doi.org/10.1124/dmd.119.089557
  27. Bao Y, Phan M, Zhu J, Ma X, Manautou JE, Zhong XB (2022) Alterations of cytochrome P450-mediated drug metabolism during liver repair and regeneration after acetaminophen-induced liver injury in mice. Drug Metab Dispos 50:694–703. https://doi.org/10.1124/dmd.121.000459
  28. Yende SR, Harle UN, Chaugule BB (2014) Therapeutic potential and health benefits of Sargassum species. Pharmacogn Rev 8:1–7. https://doi.org/10.4103/0973-7847.125514
  29. Rushdi MI, Abdel-Rahman IAM, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, Hassan HM, Elmaidomy AH, Abdelmohsen UR (2020) Pharmacological and natural products diversity of the brown algae genus Sargassum. RSC Adv 10:24951–24972. https://doi.org/10.1039/d0ra03576a
  30. Raghavendran HB, Sathivel A, Devaki T (2005) Antioxidant effect of Sargassum polycystum (Phaeophyceae) against acetaminophen induced changes in hepatic mitochondrial enzymes during toxic hepatitis. Chemosphere 61:276–281. https://doi.org/10.1016/j.chemosphere.2005.01.049
  31. Hira K, Sultana V, Ara J, Haque SE (2017) Protective role of Sargassum species in liver and kidney dysfunctions and associated disorders in rats intoxicated with carbon tetrachloride and acetaminophen. Pak J Pharm Sci 30:721–728
  32. Quintal-Novelo C, Rangel-Méndez J, Ortiz-Tello Á, GranielSabido M, Pérez-Cabeza de Vaca R, Moo-Puc R (2018) A Sargassum fluitans Borgesen ethanol extract exhibits a hepatoprotective effect in vivo in acute and chronic liver damage models. Biomed Res Int 2018:6921845. https://doi.org/10.1155/2018/6921845
  33. Sohail N, Hira K, Tariq A, Sultana V, Ehteshamul-Haque S (2019) Marine macro-algae attenuate nephrotoxicity and hepatotoxicity induced by cisplatin and acetaminophen in rats. Environ Sci Pollut Res Int 26:25301–25311. https://doi.org/10.1007/s11356-019-05704-y
  34. Hira K, Farhat H, Sohail N, Ansari M, Ara J, Haque SE (2021) Hepatoprotective activity against acetaminophen-induced liver dysfunction and GC-MS profiling of a brown algae Sargassum ilicifolium. Clin Phytosci 7:40. https://doi.org/10.1186/s40816-021-00274-4
  35. Kim HJ, Hearath KHINM, Dinh DTT, Kim HS, Jeon YJ, Kim HJ, Jee YH (2021) Sargassum horneri ethanol extract containing polyphenols attenuates PM-induced oxidative stress via ROS scavenging and transition metal chelation. J Funct Foods 29:104401. https://doi.org/10.1016/j.jff.2021.104401
  36. Kim MJ, Jo HG, Ramakrishna C, Lee SJ, Lee DS, Cheong SH (2021) Anti-inflammatory and antioxidant activities of Sargassum horneri extract in RAW264.7 macrophages. Phys Act Nutr 25:45–53. https://doi.org/10.20463/pan.2021.0025
  37. Lee YH, Kim HR, Yeo MH, Kim SC, Hyun HB, Ham YM, Jung YH, Kim HS, Chang KS (2023) Anti-diabetic potential of Sargassum horneri and Ulva australis extracts in vitro and in vivo. Curr Issues Mol Biol 45:7492–7512. https://doi.org/10.3390/cimb45090473
  38. Herath KHINM, Kim HJ, Jang JH, Kim HS, Kim HJ, Jeon YJ, Jee Y (2020) Mojabanchromanol isolated from Sargassum horneri attenuates particulate matter induced inflammatory responses via suppressing TLR2/4/7-MAPK signaling in MLE-12 cells. Mar Drugs 18:355. https://doi.org/10.3390/md18070355
  39. Rasool MK, Sabina EP, Ramya SR, Preety P, Patel S, Mandal N, Mishra PP, Samuel J (2010) Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice. J Pharm Pharmacol 62:638–643. https://doi.org/10.1211/jpp.62.05.0012
  40. Hong SW, Lee HS, Jung KH, Lee H, Hong SS (2012) Protective effect of fucoidan against acetaminophen-induced liver injury. Arch Pharm Res 35:1099–1105. https://doi.org/10.1007/s12272-012-0618-5
  41. Wang YQ, Wei JG, Tu MJ, Gu JG, Zhang W (2018) Fucoidan alleviates acetaminophen-induced hepatotoxicity via oxidative stress inhibition and Nrf2 translocation. Int J Mol Sci 19:4050. https://doi.org/10.3390/ijms19124050
  42. Koshak MF, El-Readi MZ, Elzubier ME, Refaat B, Almaimani RA, Idris S, Althubiti M, Al-Amodi HS, Eid SY (2023) Antioxidative and anti-inflammatory protective effects of fucoxanthin against paracetamol-induced hepatotoxicity in rats. Mar Drugs 21:592. https://doi.org/10.3390/md21110592
  43. Snawder JE, Roe AL, Benson RW, Roberts DW (1994) Loss of CYP2E1 and CYP1A2 activity as a function of acetaminophen dose: relation to toxicity. Biochem Biophys Res Commun 203:532–539. https://doi.org/10.1006/bbrc.1994.2215
  44. Wang Y, Jiang Y, Fan X, Tan H, Zeng H, Wang Y, Chen P, Huang M, Bi H (2015) Hepato-protective effect of resveratrol against acetaminophen-induced liver injury is associated with inhibition of CYP-mediated bioactivation and regulation of SIRT1-p53 signaling pathways. Toxicol Lett 236:82–89. https://doi.org/10.1016/j.toxlet.2015.05.001
  45. Miao X, Jin C, Liu J, Wang J, Chen Y (2023) Honokiol attenuates acetaminophen-induced acute liver injury by inhibiting hepatic CYP1A2 activity and improving liver mitochondrial dysfunction. Chin Herb Med 15:231–239. https://doi.org/10.1016/j.chmed.2023.02.002
  46. Gamal-Eldeen AM, Ahmed EF, Abo-Zeid MA (2009) In vitro cancer chemopreventive properties of polysaccharide extract from the brown alga Sargassum latifolium. Food Chem Toxicol 47:1378–1384. https://doi.org/10.1016/j.fct.2009.03.016
  47. Raafat EM, Gamal-Eldeen AM, El-Hussieny EA, Ahmed EF, Eissa AA (2014) Polysaccharide extracts of the brown alga Sargassum asperifolium possess in vitro cancer chemopreventive properties. Nat Prod Res 28:2304–2311. https://doi.org/10.1080/14786419.2014.926351
  48. Yim SK, Kim K, Chun S, Oh T, Jung W, Jung K, Yun CH (2020) Screening of human CYP1A2 and CYP3A4 inhibitors from seaweed in silico and in vitro. Mar Drugs 18:603. https://doi.org/10.3390/md18120603