In this paper, we analyzed the operation of the ignition circuit for electronic arm and fire device(EAFD), and investigated the sensitive elements of the circuit system. For reliability analysis, the EAFD ignition circuit was modeled using the PSpice simulation tool, and the output results of the circuit were examined by changing the tolerance of each circuit element. Monte Carlo simulation was used by maintaining the values of the observed sensitive elements at ${\pm}10%$ of the original values and adjusting the values of the other components according to a random distribution. The histogram results of the output peak currents and pulse widths were represented by Weibull and Burr type XII function fittings in three cases(element values are +10 %, 0 %, -10 % of original). For the output peak currents, mean values were 1.0028, 1.0034, and 1.0050, where the variance values were calculated as 0.0398, 0.0396, and 0.0290 using the Weibull function fitting, respectively. For pulse widths, the mean values of 0.9475, 0.9907, and 1.0293 with the variance values of 0.0260, 0.0251, and 0.0238 were obtained using the Burr Type XII function fittings.