• Title/Summary/Keyword: ${\beta}$-glucuronidase (GUS)

Search Result 84, Processing Time 0.023 seconds

Cloning and Expression of $\beta$-Glucuronidase from Lactobacillus brevis in E. coli and Application in Bioconversion of Baicalin and Wogonoside

  • Kim, Hyun-Sung;Kim, Jin-Yong;Park, Myeong-Soo;Zheng, Hua;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1650-1655
    • /
    • 2009
  • The $\beta$-glucuronidase (GUS) gene from Lactobacillus brevis RO1 was cloned and expressed in Escherichia coli GMS407. The GUS gene was composed of 1,812 bp, encoding a 603-amino-acid protein belonging to glycosyl hydrolase family 2 with three conserved domains. The amino acid similarity was higher than 70% with the $\beta$-glucuronidases of various microorganisms, yet less than 58% with the $\beta$-glucuronidase of L. gasseri ADH. Overexpression and purification of the GUS was performed in $\beta$-glucuronidase-deficient E. coli GMS407. The purified GUS protein was 71 kDa and showed 1,284 U/mg of specific activity at optimum conditions of pH 5.0 and $37^{\circ}C$. At $37^{\circ}C$, the GUS remained stable for 80 min at pH values ranging from 5.0 to 8.0. The purified enzyme exhibited a half-life of 1 h at $60^{\circ}C$ and more than 2 h at $50^{\circ}C$. When the purified GUS was applied to transform baicalin and wogonoside into their corresponding aglycones, $150\;{\mu}M$ of baicalin and $125\;{\mu}M$ of wogonoside were completely transformed into baicalein and wogonin, respectively, within 3 h.

Transformation of Plant Cells by Gene Transfer : Construction of a Chimeric Gene Containing Deleted Maize Alcohol Dehydrogenase Intron and ${\beta}-Glucuronidase$ Gene and Its Expression in Potato (유전자 도입에 의한 식물세포의 형질전환 : 옥수수 알코올 탈수소효소 유전자의 절단된 인트론 및 ${\beta}-Glucuronidase$ 유전자를 함유하는 키메라 유전자의 제조와 감자에서의 발현)

  • 이광웅
    • Journal of Plant Biology
    • /
    • v.35 no.3
    • /
    • pp.237-245
    • /
    • 1992
  • To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter and the effect of the deleted maize alcohol dehydrogenase I-S (Adhl-S) intron 1 on the expression of the CaMV $35S{\beta}-glucuronidase$ (GUS) gene in potato (Solanum tuberosum L. cv. Superior), we constructed a chimeric gene and transferred it into potato with Agrobacterium tumefaciens mediated method. The pLS201, a gene transfer vector of 17.7 kilobase pairs, was composed of the CaMV 35S promoter, the 249 base pairs of deleted maize Adhl-S intron 1, the GUS reporter gene, and the kanamycin resistance gene as a selectable marker for transformation. The GUS activity was examined by histochemical and spectrophotometric assay in transformed potato plants. The GUS activity was found primarily around the vascular tissue cells in stem and root. In the spectorophotometric assay, the level of GUS activity of transgenic potato transformed with CaMV 35S/249 bp of intron 1 fragment-GUS (pLS201) was compared with that of potato transformed with CaMV 35S-GUS (pBI121). The quantitative spectrophotometric assay showed that the level of GUS activity in potato transformed with pLS201 was higher in leaf, stem and root by 30-, 34- and 42-fold, respectively than those in potato transformed with pBI121. This results indicate that the inclusion of the deleted maize Adhl-S intron 1 resulted in increament of the GUS gene expression in transgenic potato.potato.

  • PDF

Genetic Transformation of Sweet Potato by Particle Bombardment (Particle Bombardment에 의한 고구마의 형질전환)

  • 민성란;정원중;이영복;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.329-333
    • /
    • 1998
  • $\beta$-Glucuronidase (GUS) gene of Escherichia coli was introduced into sweet potato (Ipomoea batatas (L.) Lam.) cells by particle bombardment and expressed in the regenerated plants. Microprojectiles coated with DNA of a binary vector pBI121 carrying CaMV35S promoter-GUS gene fusion and a neomycin phosphotransferase gene as selection marker were bombarded on embryogenic calli which originated from shoot apical meristem-derived callus and transferred to Murashige and Skoog (MS) medium supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid and 100 mg/L kanamycin. Bombarded calli were subcultured at 4 week intervals for six months. Kanamycin-resistant calli transferred to MS medium supplemented with 0.03 mg/L 2iP, 0.03 mg/L ABA, and 50 mg/L kanamycin gave rise to somatic embryos. Upon transfer to MS basal medium without kanamycin, they developed into plantlets. PCR and northern analyses of six regenerants transplanted to potting soil confirmed that the GUS gene was inserted into the genome of the six regenerated plants. A histochemical assay revealed that the GUS gene was preferentially expressed in the vascular bundle and the epidermal layer of leaf, petiole, and tuberous root.

  • PDF

Genetic Transformation and Plant Regeneration of Codonopsis lanceolata Using Agrobacterium (Agrobacterium에 의한 더덕의 형질전환과 식물체 재분화)

  • 최필선;김윤성;유장렬;소웅영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.315-318
    • /
    • 1994
  • To obtain transformed plants, we cocultured cotyledonary explants of Codonopsis lanceolata with Agrobacterium tumefaciens LBA4404, a disamed strain harboring a binary vector pBI121 carrying the CaMV35S promoter-$\beta$-glucuronidase (GUS) gene fusion used as a reporter gene and NOS promoter-neomycin phosphotransferase gene as a positive selection marker in MS liquid medium with 1mg/L BA. After 48 h of culture, explants were transferred onto MS solid medium with Img/L BA, 250mg/L carbenicillin, and 100mg/L kanamycin sulfate and cultured in the dark. Numerous adventitious buds formed on the cut edges of the explants after 2 weeks of culture. When subjected to GUS histochemical assay buds showed a positive response at a frequency of 15%. Explants formed adventitious shoot at a frequency of 56.7%, after 6 weeks of culture. Upon transfer onto the basal medium, most of the shoots were rooted and subsequently the regenerants were transplanted to potting soil. Southern blot analysis confirmed that the GUS gene was incorporated into the genomic DNA of the GUS-positive regenerants.

  • PDF

Transformation of Pisum sativum L. var sparkle: A Non Tissue Culture Method (Agrobacterium tumefaciens를 이용한 완두(Pisum sativum L.)의 형질전환)

  • Choi, Hong Jib;Park, Soon Ki;Yoon, Young Hwi;Kim, Dal Ung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.11
    • /
    • pp.11-17
    • /
    • 1993
  • The transfer of genetic material into pea tissue was accomplished by using an avirulent strain of Agrobacterium tumefaciens containing the binary vector. The method used for transformation requires non-tissue culture steps as it involves the inoculation of the site of the shoot removed of germinating seeds. The identification of ${\beta}$-glucuronidase activity in the tissues of $T_0$ pea plants indicates that the plant expressible ${\beta}$-glucuronidase gene, contained the T-DNA region from pLPBO2, had been transferred at least into somatic tissues. Putative transformed $T_0$ pea plants were advanced to produce $T_1$ plants which were also assayed for the presence of the transferred ${\beta}$-glucuronidase gene. The presence of the ${\beta}$-glucuronidase gene in DNAs isolated from $T_1$ plant was demonstrated by DNA gel blot hybridization. This analysis revealed that the transformed plants contained ${\beta}$-glucuronidase gene.

  • PDF

Direct Regeneration of Transgenic Buckwheat from Hypocotyl Segment by Agrobacterium-mediated Transformation

  • Kim, Hyun-Soon;Kang, Hyeon-Jung;Lee, Young-Tae;Lee, Seung-Yeob;Ko, Jeong-Ae;Rha, Eui-Shik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.375-379
    • /
    • 2001
  • Transgenic plants from hypocotyl segments of buckwheat were produced with the Agrobacterium strain LBA4404 harboring the binary vector pBI121 containing chimeric genes of neomycin phosphotransferase II (npt II) and $\beta$-glucuronidase (gus). Two weeks after co-cultivation with Agrobacterium, most of the hypocotyl segments gradually became brown and died on the selection medium containing 100mg/$\ell$ of kanamycin. Plants regenerated from the hypocotyl explants grown on selection medium were GUS-positive in the leaf, stem and vascular tissues by histochemical assay, and varied in gus activity (440-2568 pmol, 4-MU/mg protein) by fluorimetry. The plants showing GUS activity were confirmed of containing GUS and NPT-II genes by polymerase chain reaction (PCR). Within 3 months, transgenic buckwheat plants were able to obtained from the hypocotyl segments.

  • PDF

Production of Transgenic Petunia hybrida cv. Rosanpion Using Agrobacterium-mediated Transformation

  • Ko, Jeong-Ae;Kim, Young-Sook;Kim, Myung-Jun;Kim, Hyun-Soon
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • Transgenic Petunia hybrida cv. Rosanpion was produced by Agrobactepium tumefaciens LBA4404 harboring a binary vector pBI 121 containing $\beta$-glucuronidase (gus) and neomycin phosphotransferase (nptII). For genetic transformation, leaf discs were precultured on MS medium supplemented with 0.5 mg/L NAA and 1.0 mg/L BA (MNB) for 2 days and cocultured for 15 mins with A. tumefaciens. For selection of transformant, leaf discs were transferred to fresh MNB containing 50 mg/L kanamycin and 500 mg/L cefotaxime. Eighteen plants were regenerated and four were confirmed by PCR for detection of gus and nptII gene integrated into the nuclear genome of petunia ‘Rosanpion’. Using this transformation system, we expect that transgenic petunia ‘Rosanpion’ incorporating a useful gene can be produced.

  • PDF

Uptake and Expression of Foreign Genes Using Seed-Derived Embryos of Rice (벼 종자 유래 배에서 외래유전자의 도입과 발현)

  • 정구흥
    • Journal of Plant Biology
    • /
    • v.37 no.1
    • /
    • pp.77-83
    • /
    • 1994
  • DNA uptake in dry embryos of rice by DNA imbibition was detected by monitoring the expression of chimeric vectors. The selective markers of expression vectors used were ${\beta}-glucuronidase$ ronidase (GUS) and hygromycin phosphotransferase (HPT) genes under the control of CaMV35 S promoter. Frequency of transient expression of the foreign gene was generally 30-50% varying according to the types of vectors and rice cultivars. Dot blot analysis and DNA sequence analysis of inverse polymerase chain reaction products showed that selected rice in hygromycin B (HmB) medium had HPT gene and CaMV35S promoter DNA sequence in genomic DNA of rice. To investigate what ratio of rice having two marker genes simultaneously as rice embryos imbibed the vector DNA having two HPT and GUS gene, transform ants selected in lImB medium were subjected to PCR for GUS gene. It was shown that about 90 percentage of surviving ones in HmB medium had GUS gene.S gene.

  • PDF

Expression of gus and gfp Genes in Ggrlic (Allium sativum L.) Cells Following Particle Bombardment Transformation

  • Lacorte, Cristiano;Barros, Daniella
    • Journal of Plant Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.135-142
    • /
    • 2000
  • The activity of promoter sequences was evaluated in garlic cells using the $\beta$-glucuronidase (GUS) gene as a reporter. Histochemical GUS assay indicated transient GUS activity in leaf, callus and root cells 48 hours after particle bombardment transformation. Quantitative fluorometric assays in extracts of transformed leaves demonstrated that the CsVMV promoter induced the highest level of gene expression, which was, on average, ten fold the level induced by CaMV35S and by the Arabidopsis Act2 promoters and two fold the level expression observed with a construct containing a double CaMV35S plus the untranslated leader sequence from AMV. No activity or very low levels were observed when cells were transformed with plasmids rontaining the typical monocot promoters, Actl, from rice or the Ubi-1, from maize. The green fluorescent protein (GFP) was also tested as a marker gene for garlic transformation. Intense fluorescence was observed in leaf, callus and root cells transformed with a construct containing the gfp gene under control of the CaMV35 Promoter. No fluorescence was detected when the gfp was under control of the Ubi-1 promoter.

  • PDF