• Title/Summary/Keyword: %24Al_2O_3-SiC%24 composite

Search Result 12, Processing Time 0.033 seconds

The Properties of $\beta-SiC-ZrB_2$ Electroconductive Ceramic Composites with $Al_2O_3+Y_2O_3$Contents ($Al_2O_3+Y_2O_3 첨가량에 따른 {\beta}-SiC-ZrB_2$계 전도성 복합체의 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Hwang, Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.516-522
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-SiC-ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of$Al_2O_3+Y_2O_3$ Phase analysis of composites by XRD revealed $\alpha-SiC(6H) ZrB_2\; and YAG(Al_5Y_3O_{12})$ The relative density of composites were increased with increased Al2O3+Y2O3 contents. The Flexural strength showed the highest value of 390.6MPa for composites added with 20wt% Al2O3+Y2O3 additives at room temperature. Owing to crack deflection crack bridging phase transition and YAG of fracture toughness mechanism the fracture toughness showed the highest value of 6.3MPa.m1/2 for composites added with 24wt% Al2O3+Y2O3 additives at room temperature. The resistance temperature coefficient showed the value of$ 2.46\times10^{-3}\;, 2.47\times10^{-3},\; 2.52\times10^{-3}/^{\circ}C$ for composite added with 16, 20, 24wt% Al2O3+Y2O3 additives respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $256{\circ}C\; to\; 900^{\circ}C$.

  • PDF

Characterization of Wear Resistance of Particle Reinforced Al Matrix Composite Manufactured by Centrifugal Spray Casting (분사주조한 Al기지 입자강화 복합재료의 마모특성)

  • Bae, Cha-Hurn;Choi, Hak-Kyu;Bang, Kuk-Soo
    • Journal of Korea Foundry Society
    • /
    • v.24 no.2
    • /
    • pp.108-114
    • /
    • 2004
  • $Al_2O_3$, SiC reinforced Al matrix composites were fabricated by centrifugal spray casting method and their wear resistance characteristics have been studied. Particles are generally uniformly distributed in the microstructure of as-cast specimens. In order to investigate the effect of secondary deformation, hot rolling was performed for each specimen of pure Al matrix composites with a reduction of 10, 20, 30, 40 and 50% at $400{\sim}500^{\circ}C$, respectively. Microstructure of specimen showed that particle distribution density and hardness increased because of increasing of reduction ratio. Wear test with a various sliding velocity of 1.98, 2.38, 2.88 and 3.53m/sec showed that the wear resistance characterization of composite improved remarkably compared to the normal alloy and performs without reinforced particles. Microstructural observation for the worn surface of pure Al specimens without particles showed that a change in wear mechanism seemed to separate layer by surface fatigue. In other case of Al composite reinforced with $Al_2O_3$ and SiC, the grinder type of wear mechanism was shown.

Gas Permeation of SiC Membrane Coated on Multilayer γ-Al2O3 with a Graded Structure for H2 Separation

  • Yoon, Mi-Young;Kim, Eun-Yi;Kim, Young-Hee;Whang, Chin-Myung
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.451-456
    • /
    • 2010
  • A promising candidate material for a $H_2$ permeable membrane is SiC due to its many unique properties. A hydrogen-selective SiC membrane was successfully fabricated on the outer surface of an intermediate multilayer $\gamma-Al_2O_3$ with a graded structure. The $\gamma-Al_2O_3$ multilayer was formed on top of a macroporous $\alpha-Al_2O_3$ support by consecutively dipping into a set of successive solutions containing boehmite sols of different particle sizes and then calcining. The boehmite sols were prepared from an aluminum isopropoxide precursor and heated to $80^{\circ}C$ with high speed stirring for 24 hrs to hydrolyze the precursor. Then the solutions were refluxed at $92^{\circ}C$ for 20 hrs to form a boehmite precipitate. The particle size of the boehmite sols was controlled according to various experimental parameters, such as acid types and acid concentrations. The topmost SiC layer was formed on top of the intermediate $\gamma-Al_2O_3$ by pyrolysis of a SiC precursor, polycarbosilane, in an Ar atmosphere. The resulting amorphous SiC-on-$Al_2O_3$ composite membrane pyrolyzed at $900^{\circ}C$ possessed a high $H_2$ permeability of $3.61\times10^{-7}$ $mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ and the $H_2/CO_2$ selectivity was much higher than the theoretical value of 4.69 in all permeation temperature ranges. Gas permeabilities through a SiC membrane are affected by Knudsen diffusion and a surface diffusion mechanism, which are based on the molecular weight of gas species and movement of adsorbed gas molecules on the surface of the pores.

Manufacture and Properties of ${\beta}$-SIC-TiB$_2$ Composites Densified by Pressureless Annealing (無加壓 열처리에 의한 ${\beta}$-SIC-TiB$_2$ 複合體의 製造와 特性)

  • Shin, Yong-Deok;Ju, Jin-Young;Park, Mi-Lim
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.221-225
    • /
    • 2001
  • The effect of $Al_2O_3+Y_2O_3$ additives on fracture toughness of ${\beta}-SiC-TiB_2$ composites by hot-pressed sintering was investigated. The ${\beta}-SiC-TiB_2$ ceramic composites were hot-press sintered and pressureless-annealed by adding 16, 20, 24 wt% ${\beta}-SiC-TiB_2$(6:4 wt%) powder as a liquid forming additives at low temperature(1800 $^{\circ}C$) for 4 h. Phase analysis of composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$). The relative density was over 95-88 % of the theoretical density, and the porosity increased with increasing $Al_2O_3+Y_2O_3$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest value of 5.88 MPa${\cdot}m^{1/2}$ for composites added with 20 wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity showed the lowest value of $5.22{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm$ for composite added with 20 wt% $Al_2O_3+Y_2O_3$ additives at room temperature, and was all positive temperature coefficeint resistance(PTCR) against temperature up to 900 $^{\circ}C$.

  • PDF

Manufacture of $\beta-SiC-TiB_2$ Composites Densified by Liquid-Phase Sintering (액상소결에 의한 $\beta-SiC-TiB_2$ 복합체의 제조와 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Park, Mi-Lim;So, Byung-Moon;Lim, Seung-Hyuk;Song, Joon-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.479-481
    • /
    • 2000
  • The effect of $Al_{2}O_{3}+Y_{2}O_{3}$ additives on fracture toughness of $\beta-SiC-TiB_2$ composites by hot-pressed sintering were investigated. The f$\beta-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 16, 20, 24wt% $Al_{2}O_{3}+Y_{2}O_{3}$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 95.88% of the theoretical density and the porosity increased with increasing $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest of $5.88MPa{\cdot}m^{1/2}$ for composites added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity showed the lowest of $5.22{\times}10^{-4}\Omega{\cdot}cm$ for composite added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature and is all positive temperature coefficient resistance (PTCR) against temperature up to $700^{\circ}C$.

  • PDF

Effect of YAG on the Fracture Toughness and Electrical Conductivity of $\beta-SIC-ZrB_{2}$ Composites ($\beta-SIC-ZrB_{2}$복합체의 파괴인성과 전기전도도에 미치는 YAG의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Hwang, Chul;Park, Mi-Lim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.839-842
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC-ZrB$_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_2$O$_3$+Y$_2$O$_3$. Phase analysis of composites by XRD revelled $\alpha$ -SiC(6H), ZrB$_2$, and YAG(Al$_{5}$ Y$_3$O$_{12}$ ). Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 6.3MPa.m$^{1}$2/ for composites added with 24wt% $Al_2$O$_3$+Y$_2$O$_3$additives at room temperature. The resistance temperature coefficient respectively showed the value of 2.46$\times$10$^{-3}$ , 2.47$\times$10$^{-3}$ , 2.52$\times$ 10$^{-3}$ $^{\circ}C$ for composite added with 16, 20, 24wt% A1$_2$O$_3$+Y$_2$O$_3$additives. The electircal resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to 90$0^{\circ}C$.

  • PDF

The Properties on Ceramic/glass Composites of SiO2-B2O3-R(CaO, BaO, ZnO, Bi2O3 Borosilicate Glass System for Low Temperature Ceramics (저온 소결 세라믹스용 SiO2-B2O3-R(CaO, BaO, ZnO, Bi2O3 붕규산염계 세라믹/유리 복합체의 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Shim, Sang-Heung;Park, Jong-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • The effects of $B_2O_3-SiO_2-R(R;CaO,\;BaO,\;ZnO,\;Bi_2O_3)$ borosilicate glass system on the sintering behavior and microwave dielectric properties of ceramic/glass composites were investigated as functions of modifier, glass addition ($30{\sim}50\;vol%$) and sintering temperature ($500{\sim}900^{\circ}C$ for 2 hrs). The addition of 50 and 45 vol% glass ensured successful sintering below $900^{\circ}C$. Sintering characteristics of the composites were well described in terms of modifier. Borosilicate glass enhanced the reaction with $Al_{2}O_{3}$ to form pores, second phases and liquid phases, which was responsible to component of modifier. Dielectric constant (${\varepsilon}_{r},\;Q{\times}f_{o}$) and temperature coefficient of resonant frequency (${\tau}_{f}$) of the composite with 50 and 45 vol% glass contents($B_{2}O_{3}:SiO_{2}:R=25:10:65$) demonstrated A-CaBS(7.8, 2,560 GHz, -81ppm/$^{\circ}C$), A-BaBs(5.8, 3.130 GHz, -64 ppm/$^{\circ}C$), A-ZnBS(5.7, 17,800 GHz, -21 ppm/$^{\circ}C$), A-BiBs(45 vol% glass in total)(8.3, 2,700 GHz, -45 ppm/$^{\circ}C$) which is applicable to substrate requiring an low dielectric properties.

Synthesis of PSZ-seeding Mullite Composite from Metal Alkoxides and Its Characteristics of Sintered Body (금속 알콕사이드로부터 PSZ-seeding Mullite 복합체의 합성 및 소결체의 특성)

  • Yim, Going;Yim, Chai-Suk;Kim, Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.18-24
    • /
    • 2007
  • Mullite-PSZ composite was prepared by sol-gel method using $Al(sec-OC_4H_9)_3,\;Si(OC_2H_5)_4,\;ZrOCl_2\;8H_2O\;and\;Y_2O_3$. The sinterability ana mechanical properties of powder compacts sintered at $1,650^{\circ}C$ for 4 hrs were investigated for various PSZ contents. In result Al-Si spinel formed at $980^{\circ}C$ from amorphous dried gel, and zirconia as well as mullite crystal formed above $1,200^{\circ}C$. The sintered body was densified to $97{\sim}98%$ except the specimen containing 25vol% PSZ which showed the relative density of about 95% obtained by sintering at $1,650^{\circ}C$ for 4 h. The flexural strength of the sintered body was a maximum value of 290 MPa in 20 vol% PSZ, which was also considerably larger than the value of 200 MPa without PSZ. The value of the fracture toughness increased linearly with increase of PSZ content and showed a maximum value of $4.3MPam^{1/2}$ in 25 vol% PSZ, Namely this value was remarkably larger than the $value(2.6MPam^{1/2})$ of pure mullite without PSZ.

The Effect of SiO2 addition on Oxidation and Electrical Resistance Stability at High-temperature of P/M Fecralloy Compact (P/M Fecralloy 성형체의 고온산화 및 전기저항 안정성에 미치는 SiO2 첨가 효과)

  • Park, Jin-Woo;Ok, Jin-Uk;Jung, Woo-young;Park, Dong-kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.292-297
    • /
    • 2017
  • A metallic oxide layer of a heat-resistant element contributes to the high-temperature oxidation resistance by delaying the oxidation and has a positive effect on the increase in electrical resistivity. In this study, green compacts of Fecralloy powder mixed with amorphous and crystalline silica are oxidized at $950^{\circ}C$ for up to 210 h in order to evaluate the effect of metal oxide on the oxidation and electrical resistivity. The weight change ratio increases as per a parabolic law, and the increase is larger than that observed for Fecralloy owing to the formation of Fe-Si, Fe-Cr composite oxide, and $Al_2O_3$ upon the addition of Si oxide. Si oxides promote the formation of $Al_2O_3$ and Cr oxide at the grain boundary, and obstruct neck formation and the growth of Fecralloy particles to ensure stable electrical resistivity.

Microstructure Evaluation and Wear Resistance Property of Al-Si-X/Al2O3 Composite by the Displacement Reaction in Al-Mg Alloy Melt using High Energy Mechanical Milled Al-SiO2-X Composite Powder (HEMM Al-SiO2-X 복합 분말을 Al-Mg 용탕에서 자발 치환반응으로 제조된 Al-Si-X/Al2O3 복합재료의 조직 및 마멸 특성)

  • Woo, Kee-Do;Kim, Dong-Keon;Lee, Hyun-Bom;Moon, Min-Seok;Ki, Woong;Kwon, Eui-Pyo
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.339-346
    • /
    • 2008
  • Single-crystal $ZnIn_2S_4$ layers were grown on a thoroughly etched semi-insulating GaAs (100) substrate at $450^{\circ}C$ with a hot wall epitaxy (HWE) system by evaporating a $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structures of the single-crystal thin films were investigated via the photoluminescence (PL) and Double-crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by Varshni's relationship, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T2/(T+489K)$. After the as-grown $ZnIn_2S_4$ single-crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin-of-point defects of the $ZnIn_2S_4$ single-crystal thin films were investigated via the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained from the PL measurements were classified as donor or acceptor types. Additionally, it was concluded that a heat treatment in an S-atmosphere converted $ZnIn_2S_4$ single crystal thin films into optical p-type films. Moreover, it was confirmed that In in $ZnIn_2S_4$/GaAs did not form a native defects, as In in $ZnIn_2S_4$ single-crystal thin films existed in the form of stable bonds.