• Title/Summary/Keyword: %24NH_4NO_3%24

Search Result 250, Processing Time 0.034 seconds

Changes In Concentrations of Urea-N, NH4-N and NO3-N in Percolating Water During Rice Growing Season (수도재배포장에서 침투수의 Urea-N, NH4-N 및 NO3-N의 농도변화)

  • Lee, Sang-Mo;Yoo, Sun-Ho;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.160-164
    • /
    • 1995
  • This study was conducted to obtain quantitative data on the behavior of surface-applied urea to a paddy field which would help to protect against environmental pollution as well as to increase the efficiency of nitrogen fertilizer. The percolating water samples were collected with porous ceramic cups installed at 25, 50 and 75cm depths in a paddy field during the rice growing season(June 1992-September 1992) and analyzed for urea-N. NHAN and $NO_3-N$. In the paddy field to which urea fertilizer was applied at the rates of 12 and 24kg N/10a, the surface-applied urea was detected even at 75cm depth as the form of urea-N upto 12days after application. The maximum concentrations of urea-N in the percolating water sampled at 25, 50 and 75cm depths were the same irrespective of soil depth and the values were 0.06 and $0.12{\mu}g/m{\ell}$ for the application rates of 12 and 24kg N/10a respectively. The concentrations of $NH_4-N$ gradually decreased with time during the vegetative growth period : thereafter. the concentrations remained nearly constant. The maximum concentrations of $NH_4-N$ at 25cm depth were 1.2 and $5.6{\mu}g/m{\ell}$ for 12 and 24kg N/10a rate respectively. The $NO_3-N$ concentrations of percolating water ranged 0.1~0.5 and $0.2{\sim}0.5{\mu}g/m{\ell}$ for urea application rates of 12 and 24kg N/10a respectively. The nitrate concentration data suggest that nitrification process occurred continuously in paddy field during the rice growing season.

  • PDF

Effect of light, ultrasonication and liquid smoke on germination of proso millet (Panicum miliaceum L.) seeds

  • Kim, Min Geun;Kim, Young Ae;Jung, Ki-Yeul;Kim, Du Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.213-213
    • /
    • 2017
  • High quality seed of proso millet that has high germination percentage, germination speed, and uniformity demanded to increases rates of mechanization in cereal crop cultivation. In order to improve germination characteristics, proso millet seeds were treated with red light, ultrasonication and liquid smoke (LS) solution that generated from hickory wood. All treatments were performed in seed priming solution with 100mM $NH_4NO_3$ at $15^{\circ}C$ for 24hrs under aeration condition. Seeds were exposed under light intensity of 2000 lux for 15m, 30m, 60m, and 120m in priming solution. Ultrasonic treatment was performed at 60%, 80%, and 100% intensity of 21.6 KHz for 5m, 10m, and 20m in priming solution. For LS treatment seed were soaked in 0%, 0.5%, 1.0%, 5.0% and 10.0% of diluted solution with $dH_2O$ or 100mM $NH_4NO_3$ solution. The effect of seed treatment was evaluated with germination percentage (GP), mean germination time (MGT), germination index (GI), germination rate (GR), Germination uniformity (GU) and heath seed percentage (HS). Our results demonstrate that red light (15min) or ultrasonication (21.6kHz, 5min) treatment improved MGT, GI, GR, and GU comparing to untreated control. Importantly, we show that LS treatments have significant effect on the health seedling and germination characteristics. Proso millet seeds that treated with 5% LS solution for 24hrs improves HS up to 97% that similar results obtained in 100mM $NH_4NO_3$ priming for 24hrs. The combined treatment with LS solution and 100mM $NH_4NO_3$ priming were not effective in all treatments. Our results demonstrate that treating seeds with LS or 100mM $NH_4NO_3$ priming or ultrasonication improves germination characteristics. The methods described here will help advance research using this species by increasing the germination performance at which successive seed pellet process.

  • PDF

Reuse and Concentration of Sewage by Forward Osmosis Using Fertilizer as Draw Solution (비료 유도용액의 정삼투를 이용한 하수의 재이용 및 농축)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.122-131
    • /
    • 2019
  • In order to reuse and concentrate the sewage, a forward osmosis using fertilizer as draw solution was applied. Sewage-1, which is the supernatant after settling for 30 minutes for the primary settling basin influent, and Sewage-2, which is the supernatant after settling for 30 minutes for the effluent, and Sewage-3, which is the filtrate filtered through a $1{\mu}m$ cartridge filter for the effluent were tested. Eight draw solutions of $NH_4H_2PO_4$, KCl, $KNO_3$, $NH_4Cl$, $(NH_4)_2HPO_4$, $NH_4NO_3$, $NH_4HCO_3$, and $KHCO_3$ were used in consideration of osmotic pressure, solubility and pH. In the case of Sewage-3, the permeate flux was almost similar to that of the discharge water of the sewage treatment plant, and was larger than that of Sewage-1 and Sewage-2. $NH_4H_2PO_4$ was the smallest, and $NH_4NO_3$ was the largest in the specific reverse solute flux. $NH_4H_2PO_4$ was found to be most useful for the reuse and concentration of sewage because it contains nitrogen and phosphorus, which are the major components of fertilizer, as well as low specific reverse solute flux. When $NH_4H_2PO_4$ was used as the draw solution, the concentration factor after 24 hours for Sewage-3 was 1.72.

Effect of NO3- and NH4+ Concentrations on Root Growth and Eleutherosides Accumulation in adventitious root Culture of Eleutherococcus senticosus (가시오갈피의 부정근 배양시 부정근의 생육과 eleutheroside류의 함량에 미치는 NO3-와 NH4+ 비율 및 농도의 영향)

  • Ahn, Jin-Kwon;Lee, Wi-Young;Park, Young-Ki
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.48-53
    • /
    • 2007
  • This study was carried out to investigate the effect of $NO_3{^-}$ and $NH_4{^+}$ on the adventitious root growth and eleuthroside synthesis of Eleutherococcus senticosus during 3 L-bioreactor culture. The change of medium component ratio was also measured during culture. The fresh weignt of adventitious root reached to the greatest level of 24.4g FW/L in the presence of 50 mM $NO_3{^-}$ and 10 mM $NH_4{^+}$, representing 3.4-fold increase compared to the 60 mM $NH_4{^+}$. However, as the increase of the portion of $NH_4{^+}$, the root growth was decreased. Maximum eleutheroside B and E1 production were $249{\mu}g/g$ and $43{\mu}g/g$, respectively, with 30 mM total nitrogen source. The maximum production of eleutheroside E were $788{\mu}g/g$ with 120 mM total nitrogen source. The greatest weight of adventitious root increased up to 6.2 fold of inoculum size within 9 weeks. The change of pH was influenced from 4.81 to 6.35 and the amounts of $NH_4{^+}$ and $K^+$ were decreased during culture periods. From these results we suggest, need further study of various treatment to increase the growth of biomass and the accumulation of useful secondary metabilites.

Characteristics of Chemical Species in $PM_{205}$ during the Winter in Kangwha (강화도 지역에서 겨울철 $PM_{205}$의 화학적 성분 특성)

  • 여현구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.309-316
    • /
    • 2000
  • Chemical compositions of air pollutants with fine particles (<2.5 ${\mu}{\textrm}{m}$, PB2.5) were evaluated at background site. Kangwha. in Korea during the winter season. The data set was obtained for seventeed days with 24-hour sampling from December 11 to 16, 1996 and from January 9 to 1997. The chemical species have been measured {{{{ {SO }`_{4 } ^{2- } }}}}, {{{{ { NO}`_{3 } ^{- } }}}}, {{{{ { NH}`_{4 } ^{+ } }}}}. OC and EC in the particulate phase, NH3 HNO3, HCl and SO2 in the gas phase using the three stage filter pack method. Mean concentration ($\mu\textrm{g}$/m3) of this study were : 35.42 for PM2.5 8.78 for organic carbon (OC) 7.25 for nss {{{{ {SO }`_{4 } ^{2- } }}}}, 4.94 for {{{{ { NO}`_{3 } ^{- } }}}}, 3.58 for {{{{ { NH}`_{4 } ^{+ } }}}} and 1.48 for elemental carbon (EC) respectively. Contributive rates of major particulate components in PM2.5 were OC (25%) nss- {{{{ {SO }`_{4 } ^{2- } }}}}(20%) ,{{{{ { NO}`_{3 } ^{- } }}}}(14%) {{{{ { NH}`_{4 } ^{+ } }}}}(10%) and EC (4%) respectively and these components could be accounted for 73% of PM2.5 mass. Reactive forms of {{{{ { NH}`_{4 } ^{+ } }}}} were considered as NH4HO3 and NH4{{{{ {SO }`_{4 } ^{2- } }}}} during the sampling periods. {{{{ { NO}`_{3 } ^{- } }}}}/({{{{ { NO}`_{3 } ^{- } }}}} + HNO3) and {{{{ {SO }`_{4 } ^{2- } }}}}/({{{{ {SO }`_{4 } ^{2- } }}}} + SO2) were calculated 0.8 and 0.9 respectively. Most of these compounds might be formed in partiiculate phase in the air. Correlation coefficient between OC and EC was 0.866 which might have the same sources during the sampling periods,.

  • PDF

Evaluating the Performance of Draw Solutions in Forward Osmosis Desalination Using Fertilizer as Draw Solution (유도용액으로 비료를 사용한 정삼투 해수담수화에서 유도용액의 성능 평가)

  • Jeong, Namjo;Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.400-408
    • /
    • 2014
  • This study is to evaluate the performance of draw solutions in forward osmosis desalination using fertilizer as draw solution. Considering osmotic pressure, solubility, and pH, $NH_4NO_3$, $NH_4H_2PO_4$, $(NH_4)_2HPO_4$, KCl, $KNO_3$, and $KHCO_3$ were screened from a comprehensive lists of fertilizer. Their performance were evaluated in terms of pure water permeate flux, reverse solute flux, and specific reverse solute flux for nitrogen and phosphorus. KCl showed the highest pure water permeate flux among the selected fertilizers while $(NH_4)_2HPO_4$ draw solution had the lowest flux. $NH_4H_2PO_4$ showed the lowest reverse solute flux and specific reverse solute flux for nitrogen followed by $(NH_4)_2HPO_4$, $KNO_3$, and $NH_4NO_3$. Although the pure water permeate flux of $NH_4H_2PO_4$ is lower than the other draw solutions, because it contains both nitrogen and phosphorus, and have the lowest reverse solute flux and specific reverse solute flux, it is a promising candidate as draw solution for forward osmosis desalination.

Sampling and Analysis of Acidic Air Pollutants Using an Annular Denuder System during the Summer Season in Chongju City (디누더 측정기를 이용한 여름철 청주시의 산성오염물질 측정과 분석)

  • 이학성;강병욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.441-448
    • /
    • 1996
  • The cyclone/annular denuder system/filter pack sampling system (ADS) was used to collect the acidic air pollutants in Chongju city. The data set was collected on nine different days with 24 hour sampling period from July 27 through August 27, 1995. The chemical species measured were $HNO_3, HNO_2, SO_2 and NH_3$ in the gas phase, and $PM_{2.5}(d_P<2.5 \mum), SO_4^{2-}, NO_3^- and NH_4^+$ in the particulate phase. Mean concentrations measured from this study were: $0.90 \mug/m^3 for HNO_3, 1.27 \mug/m^3 for HNO_2, 10.9 \mug/m^3 for SO_2, 4.82 \mug/m^3 for NH_3, 27.5 \mug/m^3 for PM_{2.5}, 5.24 \mug/m^3 for SO_4^{2-}, 1.22 \mug/m^3 for NO_3^-, and 1.64 \mug/m^3 for NH_4^+$. The fine particle $(PM_{2.5})$ mass measured for the ADS samples was slightly higher than the fine particle mass measured for the corresponding dichotomous sampler. For the wind coming from Chongju industrial complex the concentrations of acidic air pollutants measured were higher when compared with other directions. Specially, $SO_2 and PM_{2.5}$ concentrations for the wind coming from Chongju industrial complex were 3.6 and about 2 times, respectively, higher than those of other wind directions. High correlations were observed between $PM_{2.5} and fine particle's ion components $(r=0.82 with SO_4^{2-}, r=0.76 with NO_3^- and r=0.89 with NH_4^+). NH_4^+ and SO_4^{2-}$ was also highly correlated (r=0.97).

  • PDF

Compazrison of Water Qualities and Biotic Effects of Three River Waters in Taegu Area (대구지방 하천의 수질특성과 수생물에 미치는 영향 비교)

  • Lyu, Seung-Won;Seung-Dal Song
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 1990
  • The water environmental characters of the Nakdong River, Geumho River and Sin Stream, both before-flood (Aug. 24) and after-flood (Sept. 8), have been compared, and their effects on the growth of Spirodela polyrhiza Shleiden have been examined. Before the flood, the concentrations of most of the chemical components of the Geumho River were similar to those of the Sin Stream; (COD, 19.6~21.4; alkalinity, 177~183; $NH_4\;^+$, 20.7~24.4; $NO_3\;^-$, 3.9~4.3; $PO_\;4^{3-}$, 3.4~3.7; $Mg^{2+}$, 42; $Ca^{2+}$, 68.5~69.7; $Cl^-$, 90~92; $SiO_2$, 10.4~11.2; , 11~32; LAS, 3.0~3.8; , 0.007~0.010ppm) but much higher than those of the Nakdong River (30~40 fold for $NH_4\;^+$, , $PO_\;4^{3-}$ and LAS, and 2~5 fold for COD, alkalinity, $NO_3\;^-$, $Mg^{2+}$, Cl- and ). Especially in the Geumho River, Secchi disk transparency was very low (17cm) and DO was not detected. The flood caused significant increases in some chemical components: $NH_4\;^+$, 1.0;$NO_3\;^-$, 9.6; , 12.8 and , 5.4 ppm in the Nakdong River; DO, 1.0; $NO_2\;^-$, 0.92; $NO_3\;^-$, 22.2 and $SiO_2$, 17.6ppm in the Geumho River; DO, 3.0; $NO_2\;^-$, 1.4; $NO_3\;^-$, 22.2; SiO2$SiO_2$, 19.2 and , 25.0ppm in the Sin Stream. General species diversity index (H) of phytoplankton community in the Nakdong River, Geumho River and Sin Stream before flood was 3.1, 2.7 and 1.6, respectively. After the flood, the phytoplankton growth was highly sparse in each river water, hence indices have no significance. The growth of S. polyrhiza was enhanced in Geumho River water (max. RGR=26%/day), while it ceased within 7days in Nakdong River water.

  • PDF

Comparison of Biosorption of N, P ions by Zygnema sterile and Lepocinclism textra Biomass under Irradiation Period in High Rate Algae Biomass Reactor (고율 조류 바이오매스 반응기에서 조사시간으로 본 Zygnema sterile과 Lepocinclism textra 바이오매스의 질소, 인 이온 생흡착의 비교)

  • Kong, Surk-Key
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.4
    • /
    • pp.11-21
    • /
    • 2007
  • The recent investigation indicates that the kinetic constants for anionic ions were merely the result of ion exchange between the algae cell wall surface and the anionic ion. In this study, Zygnema sterile and Lepocinclism textra, floating flagellate alga as the dominant algae strains, were cultivated using HRABR(High Rate Algae Biomass Reactor) and the cultivation conditions were 24 hrs. and 12 hrs. irradiation and it was studied how this algal biomass acts on the biosorption mechanism of anionic N and P. Results are as follows : 1. Calculating the specific chl.-a growth rate using Michaelis-Menten model, the one of 24hrs. irradiation was about 55 times higher than the one of 12 hrs. irradiation 2. Calculating the specific chl.-a growth rate using Kuo model, the one of 24 hrs. irradiation was about 2.26 times higher than the one of 12 hrs. irradiation 3. Langmuir model can apply to the biosorption mechanism of anionic N and P in HRABP. 4. Regarding the chlorophyll-a concentration as unit weight of sorbent, the ion selectivity coefficients for N and P are as follows : $(NH_3-N)+(NO_3-N)$ in 24 hrs. irradiation ; 44.984 $PO_4-P$ in 24 hrs. irradiation ; 24.237 $(NH_3-N)+(NO_3-N)$ in 12 hrs. irradiation ; 1432.851 $PO_4-P$ in 12 hrs. irradiation ; 599.076

Chemical Composition of Fine Aerosol Associated with Visibility Degradation in Seoul Metropolitan Area in 1994 (1994년 수도권 지역에서의 시정과 미세 입자상물질 화학조성과의 관계해석)

  • 한진석;김병곤;김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.377-387
    • /
    • 1996
  • This study was carried out to monitor the visibility including measurement and analysis of the various parameters such as particle size distribution, chemical composition, and meteorotical conditions to understand the characteristics and causes of this phenomenon. According to the analysis of intensive sampling, $SO_4^{2-}, NO-3^-, Cl^-, NH_4^+$ ion concentration increased together with the mass concentration around 1 $\mu$m in the case of low visibility. $(NH_4)_2SO_4, NH_4NO_3$, and $NH_4Cl$ were thought to be the major components of fine particles. The statistical analysis showed that the scattering effect of particle was 81.2%, the absorption effect was 14.9%. Therefore, these effects were the major factors to reduce the visibility. In conclusion, the visibility was reduced by the fine particle of sulfate (18.6%), nitrate (14.2%), organic carbon (10.8%), element carbon (25.8%), and residual (24.8%) during this study.

  • PDF