• Title/Summary/Keyword: %24TiO_2%24

Search Result 371, Processing Time 0.029 seconds

Development of High Performance Photoelectrode Paste Doped Glass Powder for Dye-sensitized Solar Cells (염료감응형 태양전지용 유리분말이 함유된 고효율 광전극 페이스트 개발)

  • Zhao, Xing Guan;Jin, En Mei;Gua, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.427-431
    • /
    • 2011
  • Hybrid $SiO_2-TiO_2$ photoelectrode with different type of layers was investigated in dye-sensitized solar cells (DSSC). Use of a thin layer of nanocrystalline $TiO_2$ would imply reduction in the amount of dye coverage, however, lower amount of dye in the thin films would imply fewer electron generation upon illumination. So, thus, it becomes necessary to include a $SiO_2-TiO_2$ layer for increase light harvesting effect such that the lower photon conversion due to thin layer could be compensated. In this paper reports the use of transparent high surface area $TiO_2$ layer and an additional $SiO_2-TiO_2$ layer, thus ensuring adequate light harvesting in these devices. The best solar conversion efficiency 6.6% under AM 1.5 was attained with a multi-layer structure using $TiO_2$ layer/$SiO_2-TiO_2$ layer/$TiO_2$ layer for the light harvesting and this had resulted to about 44% increase in photocurrent density of dye-sensitized solar cells.

The effect of Zn2TiO4 on willemite crystalline glaze (Zn2TiO4가 아연결정유약에 미치는 효과)

  • Lee, Chi-Youn;Lee, Hyun-Soo;Shin, Kyung-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.70-76
    • /
    • 2014
  • $Zn_2TiO_4$, using an anatase form of $TiO_2$ on zinc crystalline glaze, was shown as effective nuclear agent. Thus the effects on glaze were studied with synthesized $Zn_2TiO_4$ at low temperature. First, the chromophore elements were employed in synthesized $Zn_2TiO_4$ then add them in the zinc crystalline glaze. Crystal creation and development of color by $Zn_2TiO_4$ addition on the zinc crystalline glaze were more effective. Addition of $Zn_2TiO_4$, which is developed in low range temperature, is effected as zinc crystalline nuclear in the willemite glaze. When 5 wt% of synthesized $Zn_2TiO_4$ was added to the willemite glaze, nuclear creation increases and steadily retains. Therefore addition of respectively doped $Zn_2TiO_4$ with CoO, NiO, and CuO would increase doped effects in the glaze, various color willemite crystal were obtained.

PVP-assisted Synthesis of TiO2 Nanospheres and their Application to the Preparation of Superhydrophobic Surfaces

  • Munkhbaatar, Naranchimeg;Ryu, Ilhwan;Park, Dasom;Yim, Sanggyu
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.219-223
    • /
    • 2015
  • Enhancement of the surface hydrophobicity of polydimethylsiloxane (PDMS) thin films deposited on substrates covered with titanium dioxide ($TiO_2$) nanospheres was studied. First, a low-temperature solution-phase method using polyvinylpyrrolidone (PVP) as a surface capping agent and a water/dimethylformamide (DMF) mixture as the reaction medium was used to synthesize monodisperse $TiO_2$ nanospheres. It was possible to easily control hydrolysis rate of the Ti-precursors and the size of the synthesized nanospheres by varying the amount of PVP and the volume ratio of the solvent mixture. Spray coating of the synthesized $TiO_2$ nanospheres under the PDMS film increased the water contact angle of the film surface to $150.3^{\circ}$. This simple treatment can modify the surface morphology at a nanometer scale without any long or complicated nanoprocess; hence, the surface enters the superhydrophobic Cassie-Baxter regime.

Corrosion Characteristics of $Al_3Ti-Cr$ Intermetallics (금속간 화합물 $Al_3Ti-Cr$의 부식특성)

  • Yu, Yong-Jae;Kim, Seong-Hun;Choe, Yun-Je;Kim, Jeong-Gu;Lee, Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.398-402
    • /
    • 2000
  • Three kinds of $Al_3Ti-Cr$ alloys, namely, $Al_{67}Ti_{25}Cr_8,\;Al_{66}Ti_{24}Cr_{10}\;and\;Al_{59}Ti_{26}Cr_{15}$, were prepared by induction melting followed by the thermomechanical treatment. The corrosion behavior in 3.5% NaCl solution and the high-temperature oxidation behavior at 1000, 1100 and $1200^{\circ}C$ for the prepared alloys were investigated. Electrochemical results indicated increased resistance to localized corrosion with increasing Cr content. Cr additions were found to prevent passive film from undergoing brittle fracture. XPS results revealed the passive films of $Al_3Ti-Cr$ alloys were composed mainly of $Al_2O_3$ that coexisted with $TiO_2$ and $Cr_2O_3$. The overall oxidation resistance of the prepared alloys were excellent. Specifically, the oxidation resistance increased in the order of $Al_{59}Ti_{26}Cr_{15},\;Al_{66}Ti_{24}Cr_{10}\;and\;Al_{67}Ti_{25}Cr_8$. As the Al content in the base alloys increased, the $Al_2O_3$ formation was facilitated leading to the increased oxidation resistance.

  • PDF

Effects of Sputtering Pressure on the Properties of BaTiO3 Films for High Energy Density Capacitors

  • Park, Sangshik
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Flexible $BaTiO_3$ films as dielectric materials for high energy density capacitors were deposited on polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible $BaTiO_3$ films were dependent on the sputtering pressure during sputtering. The RMS roughness and crystallite size of the $BaTiO_3$ increased with increasing sputtering pressure. All $BaTiO_3$ films had an amorphous structure, regardless of the sputtering pressures, due to the low PET substrate temperature. The composition of films showed an atomic ratio (Ba:Ti:O) of 0.9:1.1:3. The electrical properties of the $BaTiO_3$ films were affected by the microstructure and roughness. The $BaTiO_3$ films prepared at 100 mTorr exhibited a dielectric constant of ~80 at 1 kHz and a leakage current of $10^{-8}A$ at 400 kV/cm. Also, films showed polarization of $8{\mu}C/cm^2$ at 100 kV/cm and remnant polarization ($P_r$) of $2{\mu}C/cm^2$. This suggests that sputter deposited flexible $BaTiO_3$ films are a promising dielectric that can be used in high energy density capacitors owing to their high dielectric constant, low leakage current and stable preparation by sputtering.

Application of Photocatalytic Degradation for Efficient Treatment of Organic Matter in Landfill Leachate in Jeju Island (제주도 매립장 침출수 중 유기물의 효율적 처리를 위한 광촉매 분해 반응의 응용)

  • Lee, Chang-Han;Lee, Taek-Kwan;Cho, Eun-Il;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.31 no.8
    • /
    • pp.677-689
    • /
    • 2022
  • In order to photocatalytically treat organic matter (CODCr) and chromaticity effectively, chemical coagulation and sedimentation processes were employed as a pretreatment of the leachate produced from landfill in Jeju Island. This was performed using FeCl3·6H2O as a coagulant. For the treated leachate, UV/TiO2 and UV/TiO2/H2O2 systems were investigated, using 4 types of UV lamps, including an ozone lamp (24 W), TiO2 as a photocatalyst, and/or H2O2 as an initiator or inhibitor for photocatalytic degradation. In the chemical coagulation and sedimentation process using FeCl3·6H2O, optimum removal was achieved with an initial pH of 6, and a coagulant dosage of 2.0 g/L, culminating in the removal of 40% CODCr and 81% chromaticity. For the UV/TiO2 system utilizing an ozone lamp and 3 g/L of TiO2, the optimum condition was obtained at pH 5. However, the treated CODCr and chromaticity did not meet the emission standards (CODCr: 400 mg/L, chromaticity: 200 degrees) in a clean area. However, for a UV/TiO2/H2O2 system using 1.54 g/L of H2O2 in addition to the above optimum UV/TiO2 system, the results were 395 mg/L and 160 degrees, respectively, which were within the emission standard limits. The effect of the UV lamp on the removal of CODCr, and chromaticity of the leachate decreased in the order of ozone (24 W) lamp > 254 nm (24 W) lamp > ozone (14 W) lamp > 254 nm (14 W) lamp. Only CODCr and chromaticity treated with the ozone (24 W) lamp met the emission standards.

Adsorption Kinetic Study of Ruthenium Complex Dyes onto TiO2 Anodes for Dye-sensitized Solar Cells (DSSCs) (염료감응 태양전지용 루테늄 금속착체 염료의 이산화티타늄 전극에 대한 동적 흡착 연구)

  • An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.929-934
    • /
    • 2011
  • The adsorption kinetic study of ruthenium complex, N3, onto nanoporous titanium dioxide ($TiO_2$) photoanodes has been carried out by measuring dye uptake in-situ. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were chosen to follow the adsorption process. Kinetic parameters, rate constant, equilibrium adsorption capacities and related coefficient coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption kinetics of N3 dye molecules onto porous $TiO_2$ obeys pseudo second-order kinetics with chemisorption being the rate determining step. Additionally the heterogeneous surface and the pore size distribution of porous $TiO_2$ adsorbents were also discussed.

A Study on Solid Reaction of BaCO3-TiO2 System (BaCO3-TiO2계의 고상반응에 관한 연구)

  • 이응상;황성연;임대영
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.5
    • /
    • pp.484-490
    • /
    • 1987
  • Diffusion coupling experiment was done to study expansion of body and soild reaction in BaCO3-TiO2 system. Specimen of BaCO3 and TiO2 was formed with Pt-mark's method. Each specimen was fired at interval of 25℃ from 900℃ to 1000℃ for 2hrs. After that, specimen was fixed with resin and polished. Product layers of specimen were observed with SEM and EDS. The result were following; 1. Diffusion component is Ba2+, which diffuse toward TiO2. 2. Large crack between layer of BaCO3 and Ba2TiO4 was generated because of difference of thermal expansion coefficient. 3. Ba2TiO4 is formed to TiO2 body by the reaction of BaTiO3 and BaO and its structure is very porous. 4. BaTiO3 changes immediately to Ba2TiO4 by the reaction of BaO. But BaTiO3 which formed by the reaction of TiO2 and Ba2TiO4 exsists as layer because the diffusion distance of Ba2+ is far.

  • PDF

Direct Growth of TiO2-Nanotubes on Ti-Mesh Substrate for Photoanode Application to Dye-sensitized Solar Cell

  • Park, Min-Woo;Lee, Dong-Hoon;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.14-19
    • /
    • 2010
  • Partial anodic oxidation of Ti-mesh with a wire diameter of ~200[${\mu}m$] produces self-aligned $TiO_2$ nanotube arrays (~50[${\mu}m$] in length) on Ti-mesh substrate. The electrolyte used for anodic oxidation was an ethylene glycol solution with an addition of 1.5 vol. % $H_2O$ and 0.2 wt. % $NH_4F$. A dye-sensitized solar cell utilizing the photoanode structure of $TiO_2$-nanotube/Ti-mesh was fabricated without a transparent conducting oxide (TCO) layer, in which Ti-mesh replaced the role of TCO. The 1.93[%] photoconversion efficiency was low, which can be attributed to both insufficient dye molecules attachment and limited electrolyte flow to dye molecules. The optimized nanotube diameter and length as well as the $TiCl_4$ treatment can improve cell performance.