• Title/Summary/Keyword: %24ZnO-In_2%24%24O_3%24 film

Search Result 27, Processing Time 0.028 seconds

Synthesis of Thin Film Type Cu/ZnO Nanostructure Catalysts for Development of Methanol Micro Reforming System (마이크로 개질기 개발을 위한 박막형 Cu/ZnO 나노구조 촉매 합성)

  • Yeo, Chan Hyuk;Kim, Yeon Su;Im, Yeon Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.193-199
    • /
    • 2013
  • In this work, thin film type Cu/ZnO nanostructure catalysts were fabricated by several synthetic routes in order to maximize the performance of the micro reforming system. For this work, various Cu/ZnO nanostructure catalysts could be synthesized by means of four approaches which are chemical vapor method, wet solution method and their hybrid method. The reforming performance of these as-synthetic catalysts was evaluated as compared to the conventional catalysts. Among the as-synthetic nanostructures, sphere type catalysts with specific surface of $18.6m^2/g$ showed the best performance of hydrogen production rate of 30ml/min at the feed rate of 0.2ml/min. This work will give the first insight on thin film type Cu/ZnO nanostructure catalyst for micro reforming system for hydrogen production of portable electronic systems.

Structural and Electrical Properties of Ga-doped ZnO-SnO2 Films (Ga이 첨가된 ZnO-SnO2막의 구조적 및 전기적 특성)

  • Park, Ki-Cheol;Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.641-646
    • /
    • 2011
  • Ga-doped ZnO-$SnO_2$ (ZSGO) films were deposited by rf magnetron sputtering and their structural and electrical properties were investigated. In order to fabricate the target for sputtering, the mixture of ZnO, $SnO_2$ (1:1 weight ratio) and $Ga_2O_3$ (3.0 wt%) powder was calcined at $800^{\circ}C$ for 1 h. The substrate temperature was varied from room temperature to $300^{\circ}C$. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The optical transmittances of the films were measured and the optical energy band gaps were obtained from the absorption coefficients. The resistivity variation with substrate temperature was measured. Auger electron spectroscopy was employed to find the atomic ratio of Zn, Sn, Ga and O in the film deposited at room temperature. ZSGO films exhibited the optical transmittance in the visible region of more than 80% and resistivity higher than $10\;{\Omega}cm$.

The Effect of Electrical and Optical Characteristics on ZnO Thin Film with Si Dopant (Si 첨가물이 ZnO의 전기적, 광학적 특성에 미치는 영향)

  • Kim, Jun-Sik;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.480-485
    • /
    • 2011
  • ZnO is an n-type semiconductor with a wide band gap near 3.37 eV. It was known that ZnO films with a resistivity of the order of $10^{-4}\;{\Omega}cm$ is not easy to obtain. 1, 3, and 5wt% Si element were added into ZnO in ordre to improve the electrical and optical characteristics. The Si-doped ZnO (SZO) was grown on a glass substrate by radio frequency (RF) magnetron sputtering at the temperature range from 100 to $500^{\circ}C$. X-ray diffraction (XRD) patterns of SZO film showed preferable crystal orientation of (002) plane. It was confirmed that the lowest resistivity of the SZO films was $2.44{\times}10^{-3}{\Omega}cm$ and SZO films were significantly influenced by the working temperature. The average transmittance of the films was over 80% in the visible ranges.

Effect of Lead Free Glass Frit Compositions on Properties of Ag System Conductor and RuO2 Based Resistor Pastes (Ag계 도체 및 RuO2계 저항체 페이스트의 특성에 미치는 무연계 글라스 프릿트 조성의 영향)

  • Koo, Bon-Keup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.200-207
    • /
    • 2011
  • Abstract: The effect of lead free glass frit compositions on the properties of thick film conductor and resistor pastes were investigated. Two types lead free frits, HBF-A(without $Bi_2O_3$) and HBF-B(with $Bi_2O_3$) were made from $SiO_2$, $B_2O_3$, $Al_2O_3$, CaO, MgO, $Na_2O$, $K_2O$, ZnO, MnO, $ZrO_2$, $Bi_2O_3$. And Ag based conductor pastes and $RuO_2$ based resistor paste were prepared by mixed with these frits and functional phase(Ag and $RuO_2$), and organic vehicle. The properties of thick film conductor and resistor sintered at $850^{\circ}C$ were studied after printing on $Al_2O_3$ substrate. The morphology of the sintered films surface were SEM and EDS were carried out to analysis the chemical composition on resistor surface and state of Ru atom in frit matrix.

Designed of rPP/d2w®/ZnO Nanocomposite Flexible Film for Food Packaging and Characterization on Mechanical and Antimicrobial Properties (산화분해촉매를 함유한 rPP/ZnO 나노컴포지트 유연식품포장필름 제조 및 물성 특성 연구)

  • Lee, Jin-kyoung;Gil, Bo-min;Lee, Dong-jin;Lee, Ik-mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, pro-oxidant($d2w^{(R)}$) and rPP/ZnO nanocomposite flexible films for food packaging were prepared, and their mechanical and antimicrobial properties were investigated. As a result, the carbonyl index and hydroxyl index increased with exposured time to heat and UV rays. Surface analysis showed that the addition of zinc oxide improved the dispersibility and compatibility of the polymer, so that the surface of the composite film was smooth and the zinc oxide particles were smaller than the compared film. And it kept the physical properties by heat and UV ray blocking effect, and it worked to reduce decomposition. In the antimicrobial activity test, the microbial reduction rate was 3 logs or more at the use concentration of zinc oxide. The tensile strength was increased and the elongation was decreased. Oxidative degradability of multi-layered film in UV exposured for 72 hours, the molecular weight of the film decreased by 75.6%, 1,294 g/mol Mn and 5,920 g/mol Mw. In the safety analysis of food packaging materials, we obtained that are in standard of polypropylene, a food contact material of domestic law.

Electrical Conduction Mechanism of AZO Thin Film and Photo-Electric Conversion Efficiency of Film-Typed Dye Sensitized Solar Cell (AZO 박막의 전기전도특성 및 필름형 염료 태양전지의 광전 변환 특성)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.66-72
    • /
    • 2010
  • In this paper, AZO thin film was deposited on polyethylene terephthalate(PET) substrate by r. f. magnetron sputtering method from a ZnO target mixed with 2[wt%] Al2O3. The flexible film-typed dye sensitized solar cell(F-DSC) was fabricated and photo-electric conversion efficiency was investigated. The results showed that the minimum resistivity and the maximum deposition rate of AZO conducting film were recorded as $1.8{\times}10^{-3}[{\Omega}{\cdot}cm]$ and 25.5[nm/min], respectively at r.f. power of 220[W]. From the analysis of XPS data an improvement of electrical resistivity or an increase in carrier concentration with increasing sputtering power may be related to the generation of lattice imperfections as a result of increasing component ratio of O1s/Zn2p, which generates donor carriers or active growth of crystalline grain. The photo-electric conversion efficiency of F-DSC with AZO conducting electrode was over 2.79[%], which was comparable as that with commercially available ITO electrode.

Analysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at $800^{\circ}C$ for 5 minutes in ambient of $O_2$ with pressure of 10Torr. X -ray diffraction shows that the homo-buffer layer is beneficial to the crystalline of N-doped ZnO thin films and all films have preferable c-axis orientation. Atomic force microscopy shows that undoped ZnO thin film grown on homo-buffer layer has an evident improvement of smoothness compared with N-dope ZnO thin films. Hall-effect measurements show that all ZnO films annealed at $800^{\circ}C$ possess p-type conductivities. The undoped ZnO film has the highest carrier concentration of $1.145{\times}10^{17}cm{-3}$. The photoluminescence spectra show the emissions related to FE, DAP and many defects such as $V_{Zn}$, $Zn_O$, $O_i$ and $O_{Zn}$. The p-type defects ($O_i$, $V_{Zn}$, and $O_{Zn}$) are dominant. The undoped ZnO thin film has a better p-type conductivity compared with N-doped ZnO thin film.

Thickness Dependence of GZO Gas Sensing Films Deposited on LTCC Substrates (LTCC 기판상에 증착한 GZO 가스 센싱 박막의 두께 의존 특성 연구)

  • Hwang, Hyun Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.215-218
    • /
    • 2011
  • A novel design of gas sensor using Ga-doped ZnO (GZO) thin films which are deposited on low temperature co-fired ceramic (LTCC) substrates is presented. The LTCC substrates with thickness of 400 ${\mu}m$ are fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The GZO thin films with different thickness are deposited on LTCC substrates, by RF magnetron sputtering method. The microstructure and sensing properties of GZO gas sensing films are analyzed as a function of the film thickness. The films are well crystallized in the hexagonal (wurzite) structure with increasing thickness. The maximum sensitivity of 3.49 is obtained at 100 nm film thickness and the fastest 90% response time of 27.2 sec is obtained at 50 nm film thickness for the operating temperature of $400^{\circ}C$ to the $NO_2$ gas.

Effect of Thickness on the Properties of Al Doped ZnO Thin Films Deposited by Using PLD (Al이 도핑된 ZnO 소재의 PLD 박막 두께 변화가 특성에 미치는 영향)

  • Pin, Min-Wook;Bae, Ki-Ryeol;Park, Mi-Seon;Lee, Won-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.568-573
    • /
    • 2011
  • AZO (Al doped ZnO) thin films were deposited on the quartz substrates with thickness variation from 25 to 300 nm by using PLD (pulsed laser deposition). XRD (x-ray diffractometer), SPM (scanning probe microscopy), Hall effect measurement and uv-visible spectrophotometer were employed to investigate the structural, morphological, electrical and optical properties of the thin films. XRD results demonstrated that films were preferrentially oriented along the c-axis and crystallinity of film was improved with increase of film thickness. As for the surface morphologies, the mean diameter and root mean square of grains were increased as the film thickness was increased. When the film thickness was 200 nm, the lowest resistivity of $4.25{\times}10^{-4}\;{\Omega}cm$ obtained with carrier concentration of $6.84{\times}10^{20}\;cm^{-3}$ and mobility of $21.4\;cm^2/V{\cdot}S$. All samples showed more than 80% of transmittance in the visible range. Upon these results, it is found that the samples thickness can affect their structural, morphological, optical and electrical properties. This study suggests that the resistivity can be improved by controlling film thickness.

Electrical and Optical Properties of the IZTO Thin Film Deposited on PET Substrates with SiO2 Buffer Layer (SiO2 버퍼층을 갖는 PET 기판위에 증착한 IZTO 박막의 전기적 및 광학적 특성)

  • Park, Jong-Chan;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.578-584
    • /
    • 2017
  • $SiO_2$ buffer layer (100 nm) has been deposited on PET substrate by electron beam evaporation. And then, IZTO (In-Zn-Sn-O) thin film has been deposited on $SiO_2$/PET substrate with different RF power of 30 to 60 W, working pressure, 1 to 7 mTorr, by RF magnetron sputtering. Structural, electrical and optical properties of IZTO thin film have been analyzed with various RF powers and working pressures. IZTO thin film deposited on the process condition of 50 W and 3 mTorr exhibited the best characteristics, where figure of merit was $4.53{\times}10^{-3}{\Omega}^{-1}$, resistivity, $4.42{\times}10^{-4}{\Omega}-cm$, sheet resistance, $27.63{\Omega}/sq.$, average transmittance (400-800 nm), 81.24%. As a result of AFM, all the IZTO thin film has no defects such as pinhole and crack, and RMS surface roughness was 1.147 nm. Due to these characteristics, IZTO thin film deposited on $SiO_2$/PET structure was found to be a very compatible material that can be applied to the next generation flexible display device.