• Title, Summary, Keyword: 강건설계

Search Result 402, Processing Time 0.034 seconds

Investigation of the Robustness Index of the Objective Function in Robust Optimization (강건최적설계에서 목적함수의 강건성 지수에 대한 연구)

  • Lee, Se-Jung;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.589-599
    • /
    • 2013
  • The concept of robust optimization is based on Taguchi's method. Especially, robustness indices of objective function pursue an insensitive and conservative design when there are variations on design variables and parameters. To accomplish the purpose, various robustness indices on the objective function have been developed. However, it can be caused limitations to develop the robustness index, because there is difference between the Taguchi's method and robust optimization. In this paper, an investigation is performed to identify the characteristics and the drawbacks of the previous studies. To achieve the purpose, evaluations are conducted by using the examples which have both a deterministic optimum and a robust optimum. Moreover, a new viewpoint as well as a robustness index using a supremum value of the objective function is proposed based on the investigation.

Minimization of Warpage in Plastic Injection-Molded Parts Based on the ‘Pick-the-Winner' Rule and Design Space Reduction Method (Pick-the-Winner법과 공간축소법에 기반한 플라스틱 사출성형품의 휨 최소화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Kim, Kwang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1171-1177
    • /
    • 2010
  • This paper presents a robust design procedure for minimizing warpage in plastic injection-molded products, where the Pick-the-Winner rule based on Taguchi's Orthogonal Array experiments and the Design Space Reduction Method are integrated for optimization. Two-step optimization approach is applied to reduce warpage in the part design stage and additionally to minimize the warpage in the process conditions design stage. Taguchi's S/N ratio is introduced as a design metric to evaluate robustness against process variations. The effectiveness of proposed optimization process is shown with an example of warpage minimization problem.

Statistical Analysis of Design Parameter of Shaped Charge (성형폭약 설계변수의 통계학적 검토)

  • 박경준;양형식
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.5-13
    • /
    • 2004
  • 성형폭약의 설계변수인 폭약 종류, 폭약 량, 라이너 각도, 라이너 두께, 라이너 재질들을 다원배치법으로 분석하였다. 교호작용이 있는 설계변수는 강건 설계를 통하여 기여비를 산정하여 정량적으로 평가하였다. 연구결과 폭약종류와 라이너 각도는 비교적 독립적인 설계변수였고 약량과 라이너 재질, 라이너 두께는 교호작용이 있었다. 강건설계에 의해 산정된 설계변수의 기여비는 약량이 73.3%, 라이너의 재질이 19.4%, 라이너의 두께가 7.3%이다.

The Performance of the National Authorization System of Private Qualification (강건설계방법을 활용한 창의적 문제해결 실습과정)

  • Kim, Tai-Oun
    • Journal of Engineering Education Research
    • /
    • v.11 no.1
    • /
    • pp.64-75
    • /
    • 2008
  • A new product development and product realization process (PRP) is a circulating and feedback process by generating ideas through creative problem solving process. The early stages of PRP correspond to conceptual design and product development, in which a large portion of product life cycle cost can be saved. The optimal design method for this stage is a robust design suggested by Taguchi. Quality must be 'engineered in' since it can not be 'inspected out.' A robust design is an engineering methodology to improve the quality of a product by minimizing the efforts of variations without eliminating the causes. The objective of this study is to propose a scheme and a case study of robust design for exploring design parameters, and introduce a creative problem solving process. Major research subjects include a creative problem solving process, robust design procedure and their implementation. For the experiment of Taguchi method, a toy catapult is adopted. For the creativity development, a short project is assigned to devise a similar tool with the toy catapult. A reference model is suggested to compare and evaluate their ideas.

Structural Robust Design of PEMFC Gasket Using Taguchi Method (다구찌 방법을 이용한 고분자 전해질 연료전지 가스켓의 강건 구조 설계)

  • Yoon, Jin-Young;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.740-746
    • /
    • 2008
  • In this paper, robust structural design of the PEMFC stack gasket is pursued with Taguchi method by considering the noise factor in stack assembly. The study of noise problem in stacking is required to secure the safety and performance improvement of PEMFC stack. The design parameters in the Taguchi method are selected so that the structural responses are insensitive to the noise factors. In the gasket analysis, a Mooney-Rivlin strain energy function is used to consider hyperelasticity between load and displacement. By uni-axial and equi-biaxial tension tests of the gasket, the material properties are determined for the use in robust design of PEMFC gasket. The robust design of the PEMFC stack may provide structural reliability.

Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems (비선형계획법에서 목적함수의 상한함수를 이용한 강건최적설계)

  • Lee, Se Jung;Park, Gyung Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.535-543
    • /
    • 2014
  • In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency.

Development of a Robust Design Process Using a Robustness Index (강건성 지수를 이용한 강건설계 기법의 개발)

  • Hwang, Kwang-Hyeon;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1426-1435
    • /
    • 2003
  • Design goal is to find the one that has the highest probability of success and the smallest variation. A robustness index has been proposed to satisfy these conditions. The two-step optimization process of the target problem requires a scaling factor. The search process of a scaling factor is replaced with the making of the decoupled design between the mean and the standard deviation. The decoupled design matrix is formed from the sensitivity or the sum of squares. After establishing the design matrix, the robust design process has a new three-step one. The first is ″reduce variability,″ the second is ″make the candidate designs that satisfy constraints and move the mean on the target,″ and the final is ″select the best robust design using the proposed robustness index.″ The robust design process is verified by three examples and the results using the robustness index are compared with those of other indices.

Robust Design of a Dynamic System Using a Probabilistic Design Method (확률적 설계 방법을 이용한 동적 시스템의 강건 설계)

  • Ryu, Jang-Hee;Choi, In-Sang;Kim, Joo-Sung;Son, Young-Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1171-1178
    • /
    • 2011
  • This paper shows the robust design results of an actuator, a kind of dynamic system. Variations in the components comprising the actuator cause uncertainties in the system's dynamic performance. Therefore, a probabilistic design method is applied to ensure robust actuator performance to component variation. A Simulink model for the actuator was built using transfer functions for the components. The dynamic responses of the actuator were evaluated using the Simulink model. Performance indexes were approximated as quadratic functions of the design parameters through the application of the response surface methodology (RSM) with the Simulink model. Then, a probabilistic design method was applied to the approximated performance indexes to obtain optimal design parameters that would provide robust actuator performance. The optimal design was compared to the present design in terms of the performance indexes and dynamic response characteristics over time.