• Title/Summary/Keyword: 강체연결뉴론제거법

Search Result 1, Processing Time 0.05 seconds

Link Weight Discrimination Analysis based Design of Input Nodes in ANN Models for Bankruptcy Prediction: Strong-Linked Neurons Selection and Weak-Linked Neurons Elimination Approach (연결강도판별분석에 의한 부도예측용 신경망 모형의 입력노드 설계 : 강체연결뉴론 선정 및 약체연결뉴론 제거 접근법)

  • 이웅규;손동우
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.469-477
    • /
    • 2000
  • 본 연구에서는 부도예측용 인공신경망 모형의 입력노드를 선정하기 위한 방법론으로 연결강도판별분석(Link Weight Discrimination Analysis)에 의한 약체뉴론제거법(Weak-Linked Neuron Elimination)과 강체뉴론선택법 (Strong-Linked Neurons Selection)을 제안한다. 연결강도판별분석이란 적절한 학습이 끝난 인공신경망 모형에서 입력노드와 연결되는 가중치의 합에 대한 절대값인 연결강도 판별식(Link Weight Discrimination)에 의해 해당 입력노 드가 출력노드에 미치는 영향정도를 분석하는 것이다. 한편 강체연결뉴론선택법은 선처리를 통해 얻어진 학습된 인공신경망의 입력노드 가운데서 연결강도판별식이 큰 뉴론만을 본처리의 입력노드로 선정하는 것인데 비해 약체연결뉴론제거법은 연결강도판별식이 일정 값 즉, 연결강도 판별임계치(Link Weight Discrimination Cut off Value) 보다 낮은 입력노드를 제외하고 나머지 입력노드만을 본처리의 입력노드로 선정하는 것이다. 본 연구에서는 강체연결뉴론선택법과 약체연결뉴론제거법을 각각 정형적인 방법론으로 정립하고 이 방법론에 의해 부도예측용 인공신경망을 구축하여 각각의 모형을 의사결정트리에 의해 선정된 인공신경망 모형 및 선처리 과정을 거치지 않은 인공신경망 모형과 성능을 비교, 분석하여 본 연구에서 제안한 방법론의 타당성을 제시하였다.

  • PDF