• Title/Summary/Keyword: 강화학습

Search Result 376, Processing Time 0.163 seconds

Improved the action recognition performance of hierarchical RNNs through reinforcement learning (강화학습을 통한 계층적 RNN의 행동 인식 성능강화)

  • Kim, Sang-Jo;Kuo, Shao-Heng;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.360-363
    • /
    • 2018
  • 본 논문에서는 계층적 RNN의 성능 향상을 위하여 강화학습을 통한 계층적 RNN 내 파라미터를 효율적으로 찾는 방법을 제안한다. 계층적 RNN 내 임의의 파라미터에서 학습을 진행하고 얻는 분류 정확도를 보상으로 하여 간소화된 강화학습 네트워크에서 보상을 최대화하도록 강화학습 내부 파라미터를 수정한다. 기존의 강화학습을 통한 내부 구조를 찾는 네트워크는 많은 자원과 시간을 소모하므로 이를 해결하기 위해 간소화된 강화학습 구조를 적용하였고 이를 통해 적은 컴퓨터 자원에서 학습속도를 증가시킬 수 있었다. 간소화된 강화학습을 통해 계층적 RNN의 파라미터를 수정하고 이를 행동 인식 데이터 세트에 적용한 결과 기존 알고리즘 대비 높은 성능을 얻을 수 있었다.

  • PDF

Strategy of Reinforcement Learning in Artificial Life (인공생명의 연구에 있어서 강화학습의 전략)

  • 심귀보;박창현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.257-260
    • /
    • 2001
  • 일반적으로 기계학습은 교사신호의 유무에 따라 교사학습과 비교사학습, 그리고 간접교사에 의한 강화학습으로 분류할 수 있다. 강화학습이란 용어는 원래 실험 심리학에서 동물의 학습방법 연구에서 비롯되었으나, 최근에는 공학 특히 인공생명분야에서 뉴럴 네트워크의 학습 알고리즘으로 많은 관심을 끌고 있다. 강화학습은 제어기 또는 에이전트의 행동에 대한 보상을 최대화하는 상태-행동 규칙이나 행동발생 전략을 찾아내는 것이다. 본 논문에서는 최근 많이 연구되고 있는 강화학습의 방법과 연구동향을 소개하고, 특히 인공생명 연구에 있어서 강하학습의 중요성을 역설한다.

  • PDF

Optimal Route Finding Algorithms based Reinforcement Learning (강화학습을 이용한 주행경로 최적화 알고리즘 개발)

  • 정희석;이종수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.157-161
    • /
    • 2003
  • 본 논문에서는 차량의 주행경로 최적화를 위해 강화학습 개념을 적용하고자 한다. 강화학습의 특징은 관심 대상에 대한 구체적인 지배 규칙의 정보 없이도 최적화된 행동 방식을 학습시킬 수 있는 특징이 있어서, 실제 차량의 주행경로와 같이 여러 교통정보 및 시간에 따른 변화 등에 대한 복잡한 고려가 필요한 시스템에 적합하다. 또한 학습을 위한 강화(보상, 벌칙)의 정도 및 기준을 조절해 즘으로써 다양한 최적주행경로를 제공할 수 있다. 따라서, 본 논문에서는 강화학습 알고리즘을 이용하여 다양한 최적주행경로를 제공해 주는 시스템을 구현한다.

  • PDF

The Design and Practice of Disaster Response RL Environment Using Dimension Reduction Method for Training Performance Enhancement (학습 성능 향상을 위한 차원 축소 기법 기반 재난 시뮬레이션 강화학습 환경 구성 및 활용)

  • Yeo, Sangho;Lee, Seungjun;Oh, Sangyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.263-270
    • /
    • 2021
  • Reinforcement learning(RL) is the method to find an optimal policy through training. and it is one of popular methods for solving lifesaving and disaster response problems effectively. However, the conventional reinforcement learning method for disaster response utilizes either simple environment such as. grid and graph or a self-developed environment that are hard to verify the practical effectiveness. In this paper, we propose the design of a disaster response RL environment which utilizes the detailed property information of the disaster simulation in order to utilize the reinforcement learning method in the real world. For the RL environment, we design and build the reinforcement learning communication as well as the interface between the RL agent and the disaster simulation. Also, we apply the dimension reduction method for converting non-image feature vectors into image format which is effectively utilized with convolution layer to utilize the high-dimensional and detailed property of the disaster simulation. To verify the effectiveness of our proposed method, we conducted empirical evaluations and it shows that our proposed method outperformed conventional methods in the building fire damage.

상태 표현 방식에 따른 심층 강화 학습 기반 캐릭터 제어기의 학습 성능 비교

  • Son, Chae-Jun;Lee, Yun-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.14-15
    • /
    • 2021
  • 물리 시뮬레이션 기반의 캐릭터 동작 제어 문제를 강화학습을 이용하여 해결해 나가는 연구들이 계속해서 진행되고 있다. 이에 따라 이 문제를 강화학습을 이용하여 풀 때, 영향을 미치는 요소에 대한 연구도 계속해서 진행되고 있다. 우리는 지금까지 이뤄지지 않았던 상태 표현 방식에 따른 강화학습에 미치는 영향을 분석하였다. 첫째로, root attached frame, root aligned frame, projected aligned frame 3 가지 좌표계를 정의하였고, 이에 대해 표현된 상태를 이용하여 강화학습에 미치는 영향을 분석하였다. 둘째로, 동역학적 상태를 나타내는 캐릭터 관절의 위치, 각도에 따라 학습에 어떠한 영향을 미치는지 분석하였다.

  • PDF

Topic directed Web Spidering using Reinforcement Learning (강화학습을 이용한 주제별 웹 탐색)

  • Lim, Soo-Yeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.395-399
    • /
    • 2005
  • In this paper, we presents HIGH-Q learning algorithm with reinforcement learning for more fast and exact topic-directed web spidering. The purpose of reinforcement learning is to maximize rewards from environment, an reinforcement learning agents learn by interacting with external environment through trial and error. We performed experiments that compared the proposed method using reinforcement learning with breath first search method for searching the web pages. In result, reinforcement learning method using future discounted rewards searched a small number of pages to find result pages.

A Study on Machine Learning and Basic Algorithms (기계학습 및 기본 알고리즘 연구)

  • Kim, Dong-Hyun;Lee, Tae-ho;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.35-36
    • /
    • 2018
  • 본 논문에서는 기계학습 및 기계학습 기법 중에서도 Markov Decision Process (MDP)를 기반으로 하는 강화학습에 대해 알아보고자 한다. 강화학습은 기계학습의 일종으로 주어진 환경 안에서 의사결정자(Agent)는 현재의 상태를 인식하고 가능한 행동 집합 중에서 보상을 극대화할 수 있는 행동을 선택하는 방법이다. 일반적인 기계학습과는 달리 강화학습은 학습에 필요한 사전 지식을 요구하지 않기 때문에 불명확한 환경 속에서도 반복 학습이 가능하다. 본 연구에서는 일반적인 강화학습 및 강화학습 중에서 가장 많이 사용되고 있는 Q-learning 에 대해 간략히 설명한다.

  • PDF

Extended Q-Learning under Multiple Subtasks (복수의 부분작업을 처리할 수 있는 확정된 Q-Learning)

  • 오도훈;이현숙;오경환
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.1_2
    • /
    • pp.25-34
    • /
    • 2001
  • 지식을 관리하는 것에 주력했던 기존의 인공지능 연구 방향은 동적으로 움직이는 외부 환경에서 적응할 수 있는 시스템 구축으로 변화하고 있다. 이러한 시스템의 기본 능력을 이루는 많은 학습방법 중에서 비교적 최근에 제시된 강화학습은 일반적인 사례에 적용하기 쉽고 동적인 환경에서 뛰어난 적응 능력을 보여주었다. 이런 장점을 바탕으로 강화학습은 에이전트 연구에 많이 사용되고 있다. 하지만, 현재까지 연구결과는 강화학습으로 구축된 에이전트로 해결할 수 있는 작업의 난이도에 한계가 있음을 보이고 있다. 특히, 복수의 부분 작업으로 구성되어 있는 작업을 처리할 경우에 기본의 강화학습 방법은 문제 해결에 한계를 보여주고 있다. 본 논문에서는 복수의 부분 작업으로 구성된 작업이 왜 처리하기 힘든가를 분석하고, 이런 문제를 처리할 수 있는 방안을 제안한다. 본 논문에서 제안하고 있는 EQ-Learning의 강화학습 방법의 대표적인 Q-Learning을 확장시켜 문제를 해결한다. 이 방법은 각각의 부분 작업 해결 방안을 학습시키고 그 학습 결과들의 적절한 순서를 찾아내 전체 작업을 해결한다. EQ-Learning의 타당성을 검증하기 위해 격자 공간에서 복수의 부분작업으로 구성된 미로 문제를 통하여 실험하였다.

  • PDF

Formal Model of Extended Reinforcement Learning (E-RL) System (확장된 강화학습 시스템의 정형모델)

  • Jeon, Do Yeong;Song, Myeong Ho;Kim, Soo Dong
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.13-28
    • /
    • 2021
  • Reinforcement Learning (RL) is a machine learning algorithm that repeat the closed-loop process that agents perform actions specified by the policy, the action is evaluated with a reward function, and the policy gets updated accordingly. The key benefit of RL is the ability to optimze the policy with action evaluation. Hence, it can effectively be applied to developing advanced intelligent systems and autonomous systems. Conventional RL incoporates a single policy, a reward function, and relatively simple policy update, and hence its utilization was limited. In this paper, we propose an extended RL model that considers multiple instances of RL elements. We define a formal model of the key elements and their computing model of the extended RL. Then, we propose design methods for applying to system development. As a case stud of applying the proposed formal model and the design methods, we present the design and implementation of an advanced car navigator system that guides multiple cars to reaching their destinations efficiently.

RBFN-based Policy Model for Efficient Multiagent Reinforcement Learning (효율적인 멀티 에이전트 강화학습을 위한 RBFN 기반 정책 모델)

  • Gwon, Gi-Deok;Kim, In-Cheol
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • /
    • pp.294-302
    • /
    • 2007
  • 멀티 에이전트 강화학습에서 중요한 이슈 중의 하나는 자신의 성능에 영향을 미칠 수 있는 다른 에이전트들이 존재하는 동적 환경에서 어떻게 최적의 행동 정책을 학습하느냐 하는 것이다. 멀티 에이전트 강화 학습을 위한 기존 연구들은 대부분 단일 에이전트 강화 학습기법들을 큰 변화 없이 그대로 적용하거나 비록 다른 에이전트에 관한 별도의 모델을 이용하더라도 현실적이지 못한 가정들을 요구한다. 본 논문에서는 상대 에이전트에 대한RBFN기반의 행동 정책 모델을 소개한 뒤, 이것을 이용한 강화 학습 방법을 설명한다. 본 논문에서는 제안하는 멀티 에이전트 강화학습 방법은 기존의 멀티 에이전트 강화 학습 연구들과는 달리 상대 에이전트의 Q 평가 함수 모델이 아니라 RBFN 기반의 행동 정책 모델을 학습한다. 또한, 표현력은 풍부하나 학습에 시간과 노력이 많이 요구되는 유한 상태 오토마타나 마코프 체인과 같은 행동 정책 모델들에 비해 비교적 간단한 형태의 행동 정책 모델을 이용함으로써 학습의 효율성을 높였다. 본 논문에서는 대표적이 절대적 멀티 에이전트 환경인 고양이와 쥐 게임을 소개한 뒤, 이 게임을 테스트 베드 삼아 실험들을 전개함으로써 제안하는 RBFN 기반의 정책 모델의 효과를 분석해본다.

  • PDF