• Title/Summary/Keyword: 공동현상

Search Result 693, Processing Time 0.031 seconds

INVESTIGATION OF SUBSURFACE CAVITIES UNDER PAVEMENT STRUCTURES WITH DYNAMIC CONE PENETROMETER TESTS (동적관입시험(DCP TESTS)에 의한 포장체 하부구조내 공동(空洞)현상에 관한 조사)

  • 김종렬
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 1998
  • 이 논문은 포장체 하부구조내 공동(空洞)현상에 대한 위치를 규명하는데 있어서 신속하면서, 간단하고 신뢰성있는 방법을 제시하고자 한다. 동적관입시험(DCP)을 사용하여 콘크리트 슬라브하부의 노상토에 대한 강도를 측정하였다. 타격회수에 대한 침하의 양으로 측정되는 동적관입침하율을 비교하여 포장체하부의 연약지반에 대한 위치를 규명하였다. 콘크리트 포장체 하부의 공동(空洞)현상 및 연약화된 노상토에 대한 정보를 얻고자 하는 엔지니어를 위하여 시험방법 및 결과분석 등을 현장시험을 통하여 체계적으로 설명하였다.

  • PDF

A Case Study on the Occurrence and Solution of Stability problems around Large Underground Storage Cavern in Highly Stressed Rock Mass (과지압 암반내 대규모 지하공동 안정성 문제 및 대책)

  • Lee, Dae-Hyuck;Lee, Hee-Suk;Park, Yeon-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.622-640
    • /
    • 2009
  • 원유 비축기지 저장공동과 같이 상하로 긴 형상의 대규모 공동에서 횡방향의 지압이 과도하게 작용하면 천정부의 응력집중과 측벽의 암반 변위가 과도하게 발생하여 저장공동의 불안정 요인이 된다. 특히 지압의 절대 크기가 암반 강도의 일정 비율 이상이 되면 응력 집중에 의한 암반의 취성 파괴를 유발하고, 이러한 현상은 터널 굴착 시 발생하는 파괴음(popping)과, 굴착면에 평행한 형태로 암편이 탈락하는 취성파괴(spalling) 현상을 동반한다. 이 글에서는 대규모 지하저장공동 굴착시 실제 발생한 과지압으로 인한 문제 사례에 대해 소개한다. 저장공동 굴착시 관찰된 암편 및 숏크리트 탈락과 균열 발생 현상을 관찰하고 암반 계측결과 분석을 통해 과지압의 현상을 진단하였다. 과지압 구간의 현재 상태 및 원안 설계안에 대해 연속체 및 불연속체 안정성 해석을 실시하여 문제의 심각성을 평가하였다. 이를 통해 굴착 형상 변경 및 특수 보강 방안을 제안하였으며 제안된 안의 보강효과에 대한 수치해석 평가 결과를 재검토 하였다. 이들 결과를 종합하여 과지압구간 보강안을 도출하였으며 상시 안정성 감시 대책으로 현장 암반의 미소파괴음 계측 방안을 제시하였다.

  • PDF

Secondary Flow Patterns of Liquid Ejector with Computational Analysis (액체상 이젝터의 2차측 액체 송출량 특성 전산해석)

  • Kwon, Kwisung;Yun, Jinwon;Sohn, Inseok;Seo, Yongkyo;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.183-190
    • /
    • 2015
  • An ejector is a type of non-powered pump that is used to supply a secondary flow via the ejection of a primary flow. It is utilized in many industrial fields, and is used for fueling the vehicle because of less failures and simple structure. Since most of ejectors in industry are gas-to-gas and liquid to gas ejector, many research activities have been reported in optimization of gas ejector. On the other hand, the liquid ejector is also applied in many industry but few research has been reported. The liquid ejector occurs cavitation, and it causes damage of parts. Cavitation has bees observed at the nozzle throat at the specified pressure. In this study, a two-dimensional axisymmetric simulation of a liquid-liquid ejector was carried out using five different parameters. The angle of the nozzle plays an important role in the cavitation of a liquid ejector, and the performance characteristics of the flow ratio showed that an angle of $35^{\circ}$ was the most advantageous. The simulation results showed that the performance of the liquid ejector and the cavitation effect have to be considered simultaneously.

Experimental Study on Enhanced Jet Grouting by Cavitation Theory (공동현상 이론을 고압분사주입공법에 적용하기 위한 실험적 연구)

  • Lee Sang-Ik;Kim Chang-Jong;Oh Se-Hun;Kim Young-Uk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • Jet grouting method is widely being used in many geotechnical problems, especially for the purpose of reinforcement of clayey ground and cut-off wall of sandy ground. However, its design depends on highly empirical method, in which many researches have been undertaken. This study investigated the effect of cavitation on jet grouting. Small-scaled model tests were carried out using specially designed and fabricated device to analyze the effect of cavitation on jet grouting with various test conditions including ground condition, injection pressure, and injection time. The test results show that cavitation has a significant effect on jet grouting, and it has a potential for engineering application.

Effects of Cavitation and Drop Characteristics on Oleo-Pneumatic Type Landing Gear Systems (공동현상을 고려한 유공압 방식 착륙장치의 낙하특성에 관한 연구)

  • Han, Jae-Do;Lee, Young-Sin;Kang, Yeon-Sik;Ahn, Oh-Sung;Kong, Jeong-Pyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • This paper investigated the drop characteristics of oleo pneumatic type landing gear for small aircraft and the effects of cavitations in modeling the landing gear system. The landing gear system employed a simple oleo pneumatic type damper without a metering pin. In general, oleo-pneumatic type landing gears are light-weighted because of it's simplicity, yet they offer excellent impact absorption characteristics. In this study, the landing gear system was modeled using MSC ADAMS, which offers a drop simulation module. After modeling the system, a series of testing was conducted, using a prototype landing gear system, to validate the analysis model and simulation results. The effect of cavitation was considered in the simulation model to obtain a better correlation between the test and simulation results. The results show that adding the cavitation effect in the simulation model significantly improved the simulation model and better captured the dynamic behaviors of the landing system. Using the 'cavitation' model, dynamics characteristics of the landing gear were further evaluated for other landing conditions, such as landing in various angles of slopes.

Frequency Analysis of the Sweepback Cavity in the Scramjet Engine (스크램제트 엔진 내 후퇴각 공동의 주파수 특성 분석)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.;Kang, Sang-Hun;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.293-296
    • /
    • 2007
  • Using the T3 free-piston shock tunnel in ANU, the cavity frequency and flow characteristics of no mass-injection, inclined mass-injection before the cavity, parallel or reverse mass-injection in the cavity are investigated in the case of Mach 3.7 inflow condition. No mass-injection doesn't have the harmonic frequencies but has high amplitude of pressure spectrum at 10 kHz. Inclined mass-injection attenuates the cavity flow fluctuation as disturbing the shear layer reflection at the trailing edge. Parallel mass-injection flow reflects at the trailing edge of the cavity directly hence, increases the cavity flow fluctuation at high injection pressure.

  • PDF

NUMERICAL ANALYSIS OF SUPER-CAVITATING FLOW AROUND TWO-DIMENSIONAL AND AXISYMMETRIC BODIES (2차원 및 축대칭 운동체 주위의 초공동 현상에 대한 수치해석)

  • Park, Sun-Ho;Rhee, Shin-Hyung
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.14-21
    • /
    • 2011
  • Super-cavitating flows around under-water bodies are being studied for drag reduction and dramatic speed increase. In this paper, high speed super-cavitating flow around a two-dimensional symmetric wedge-shaped body were studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To verify the computational method, flow over a hemispherical head-form body was simulated and validated against existing experimental data. Various computational conditions, such as different wedge angles and caviation numbers, were considered for the super-cavitating flow around the wedge-shaped body. Super-cavity begins to form in the low pressure region and propagates along the wedge body. The computed cavity lengths and velocities on the cavity boundary with varying cavitation number were validated by comparing with analytic solution.

Numerical Analysis of Supersonic Combustion Flows according to Fuel Injection Positions near the Cavity (공동주위 분사위치에 따른 초음속 연소 유동해석)

  • Jeong Eunju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.368-373
    • /
    • 2005
  • To achieve efficient combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between the fuel and airstreams. The aim of the present numerical research is to investigate the mixing enhancement combustion phenomena according to fuel injector location near the cavity in supersonic flow. Fuel injector location changes the actual length to depth ratio of the cavity in the supersonic combustor. Therefore fuel injector location near the cavity effects different fuel/air mixing efficiency and combustion efficiency.

  • PDF

The Stability of Strip Footing above Underground Cavity (지하공동에 인접한 연속기초의 안정성)

  • Oh, Se-Wook;Lee, Bong-Jik;Bae, Woo-Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.69-76
    • /
    • 2006
  • In this study, an experimental study in sand ground that was prepared by raining method was performed for modeling the bearing capacity behavior of strip footing above a cavity. The critical range of bearing capacity of the strip footing affected by underground cavity was investigated by comparing results between experiment and theory. The size of the critical region depends on several factors such as footing shape, soil property, cavity size and cavity shape. The ultimate bearing capacity was more influenced by the depth of the underground cavity than the eccentricity of the underground. In addition, an underground cavity influences on not only the decrease of the bearing capacity, but also the differential settlement of a strip footing.

  • PDF