• Title/Summary/Keyword: 급가속성능

Search Result 11, Processing Time 0.032 seconds

A study on the response characteristics of a turbocharged diesel engine under operation conditions of rapid acceleration (터보과급기 부착 디젤기관의 급가속 운전시 응답특성에 관한 연구)

  • 최낙정;전봉준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.33-41
    • /
    • 1995
  • 본 연구는 터보 과급기 부착 디젤 기관의 급가속 운전시 기관과 과급기의 과도 응답 성능을 규명하고 이를 개선하기 위한 실험을 수행하였다. 과도 응답 성능 구명은 일정한 회전 속도로 정상 운전중인 기관의 연료 펌프 랙을 10%에서 40%까지 일정 시간동안 급가속하였을 경우에 대하여 수행하였으며, 이때의 과급기 응답 지연 현상을 개선하기 위한 실험은 급가속과 동시에 압축기 출구의 흡기메니폴드 내에 일정한 압력의 공기를 추가 분사하는 방법을 이용하였다. 그리고 공기 분사 압력, 공기분사 기간, 가속률, 가속 시간 등이 압축기 출구의 압력과 온도, 터빈 입구의 압력과 온도, 실린더 압력, 기관과 과급기 회전 속도 등의 응답 성능에 미치는 영향을 가속전 정상 상태의 기관 회전 속도와 적용부하의 변화에 따라 시간의 함수로 나타내었다.

  • PDF

The Effects of Air Injection in Compressor Exit on the Response Performance of a Turbocharged Diesel Engine under the Operating Conditions of Rapid Acceleration. (터보과급디젤기관의 급가속 운전시 압축기출구에의 공기분사가 응답성능에 미치는 영향)

  • 박상규;최낙정
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.110-119
    • /
    • 2000
  • In this paper, an experimental study is carried out under the operating conditions of low speed and rapid acceleration in order to investigate and improve the response characteristics of a turbocharged diesel engine with radial turbine driven by exhaust gas. A rapid acceleration for investigating the response performance is applied to the fuel-pump rack of the engine from 0-10% to 0-40% in steps of 10%, and accelerating time of 1, 2 and 3 seconds is applied to the engine. Further experiment for improving the low speed torque and acceleration performance is also performed by means of injecting air into the inlet manifold at compressor exit during the period of low speed and application of a rapid acceleration. The effects of air injection on the response performance are represented at subjected engine speed with the changes of response performance factors such as air injection pressure, air injection period, accelerating rate, accelerating time and load. From the experimental results obtained throughout this study, it is shown that air injection into the inlet manifold at compressor exit is closely related to the improvement of low speed and acceleration performance of a turbocharged diesel engine.

  • PDF

초고진공펌프를 위한 구동장치 개발

  • O, Hyeong-Rok;Lee, In-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.91-91
    • /
    • 2011
  • 본 개발에서는 초고속 복합 분자펌프 구동을 위한 디지털 구동장치를 설계 하였다. 초고속 모터구동을 위한 핵심제어 보드 설계 및 모듈을 설계하여 기본성능을 평가하였다. 또한 초고속 전동기 운전시 급가속 성능을 향상 하기 위해 홀센서에 의한 위치측정 오차를 최소화하는 관측기를 설계하여 모터제어기를 설계하여 고속회전 시험을 하였다. AMB 구동을 위한 전류제어기를 제작하여 성능시험을 하였다. AMB 구동을 위한 와전류식 변위센서 구동부를 설계 제작하였다.

  • PDF

Development of an Integrated Charging System for 4 Stroke Turbocharged Automotive Diesel Engine (4행정 터어보과급 자동차용 디이젤 엔진의 통합과급방식의 개발)

  • Oh, S. Z.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.79-85
    • /
    • 1984
  • 터어보과급 디이젤 엔진의 저속 및 급가속영역에서 발생하는 매연의 배출을 억제하기 위하여 흡 입 공기량을 증가시키는 방안으로서 흡기관의 동적효과를 이용하기 위한 통합과급 시스템을 개발 하였다. 동조회전수에 있어서 음향임피던스 방법에 의하여 공명흡기관의 칫수를 결정하였고 흡입 공기 냉각기를 부착하여 전 회전영역에서의 흡입공기 밀도비를 증가시켰다. 기존 엔진을 변형한 두가지 시스템을 설계하여 성능측정을 하였으며, 이들에 대한 비교 및 실용성에 관해 자세히 언 급하였다.

A Study on the Performance of Soot Probe of Diesel Vehicles using Free Acceleration Mode Method (무부하급가속검사방법을 이용한 디젤자동차의 매연프로브 성능에 관한 연구)

  • Kim, Jae-Yeol;Chae, Il-Seok;Oh, Hoo-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.40-46
    • /
    • 2020
  • Inspection of vehicle systems is regularly performed by the state to ensure the emission status and the safety of vehicles. Thereby, the safety and quality of life can be improved by reducing green-house gases and fine dust, which are the main causes of vehicle defects and air pollution. This study analyzed the soot measuring probes used in the free acceleration mode method, at no-load condition, looking at the efficiency of a probe to measure soot emissions from diesel vehicles. In this study, a technique that can improve the inhalation efficiency of the probe over the (a) probes and the improved (b) probes was applied to probes (c). Probe (c) involves a structure designed close to the center of the circumference of the exhaust pipe. Results showed that the suction efficiency was improved by adding a variable center unit.

The Performance Improvement for an Active Noise Contort of Automotive Intake System under Rapidly Accelerated Condition (급가속시 자동차 흡기계의 능동소음제어 성능향상)

  • 이충휘;오재응;이유엽;이정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.183-189
    • /
    • 2003
  • The study of the automotive noise reduction has been concentrated on the reduction of the automotive engine noise because the engine noise is the major cause of automotive noise. However, many studies of automotive engine noise led to the interest of the noise reduction of the exhaust and intake system. Recently, the active control method is used to reduce the noise of an automotive exhaust and intake system. It is mostly used the LMS(Least-Mean-Square) algorithm as an algorithm of active control because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, Filtered-X LMS (FXLMS) algorithm is applied to an Active Noise Control system. However, the convergence performance of LMS algorithm went bad when the FXLMS algorithm was applied to an active control of the induction noise under rapidly accelerated driving conditions. So, in order to solve this problem, the modified FXLMS algorithm is proposed. In this study, the improvement of the control performance using the modified FXLMS algorithm under rapidly and suddenly accelerated driving conditions was identified. Also, the performance of an active control using the LMS algorithm under rapidly accelerated driving conditions was evaluated through the theoretical derivation using a chirp signal to have similar characteristics with the induction noise signal.

Development of Active Intake Noise Control Algorithm for Improvement Control Performance under Rapid Acceleration and Disturbance (L-Point Running Average Filter를 이용한 급가속 흡기계의 능동소음제어 성능향상을 위한 알고리즘 개발)

  • 전기원;조용구;오재응;이정윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.780-783
    • /
    • 2004
  • Recently Intake noise has been extensively studied to reduce the engine noise. In order to diminish intake noise several resonators were added to the intake system. However this can cause a reduction of engine output power and an increase of fuel consumption. In this study, active noise control simulation of the Filtered-x LMS algorithm is applied real instrumentation intake noise data under rapid acceleration because intake noise is more excessively increased under the such a harsh condition. But the FXLMS algorithm has poor control performance when the system is disturbed. Thus modified FXLMS algorithm using L-point running average filter is developed to improve the control performance under the rapid acceleration and disturbance. The noise reduction quantity of modified Filtered-x LMS algorithm is more than original one in two cases. In the case of control for real instrumentation intake noise data, maximum residual noise of modified FXLMS algorithm is 2.5 times less than applied the FXLMS and also in the case of disturbed, the modified FXLMS algorithm shows excellent control performance but FXLMS algorithm cat not control.

  • PDF

Estimation of Vehicle's CO2 Emission using OBD-II Interface (OBD-II 인터페이스를 이용한 자동차 CO2 배출량 추정)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.167-174
    • /
    • 2011
  • This paper described the estimation methods of CO2 emission of vehicles. The important of energy and environment has emerged in the world, and the field of vehicle's development as well. CO2 was particularly the object of emission-regulation that caused of global warming. There are performance comparison methods by driving mileage, International Panel on Climate Change (IPCC) and chemical equation for the combustion of Octane. We took the measurement by getting data through OBD-II port from vehicle covered 5 km on road. We got the diagnosis information, specific mileage and fuel consumption in this experiment. We are able to expect similar CO2 emission by the methods in the normal speed driving. Also, we can make more realistic approach of CO2 emission by the method of estimation by IPCC and chemical equation for the combustion of Octane in rapid acceleration driving.

Development of Correlation FXLMS Algorithm for the Performance Improvement in the Active Noise Control of Automotive Intake System under Rapid Acceleration (급가속시 자동차 흡기계의 능동소음제어 성능향상을 위한 Correlation FXLMS 알고리듬 개발)

  • Lee, Kyeong-Tae;Shim, Hyoun-Jin;Aminudin, Bin Abu;Lee, Jung-Yoon;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.551-554
    • /
    • 2005
  • The method of the reduction of the automotive induction noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space of the engine room. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the LMS (Least-Mean-Square) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, When the Filtered-X LMS (FXLMS) algorithm is applied to an ANC system. However, the convergence performance of LMS algorithm goes bad when the FXLMS algorithm is applied to an active control of the induction noise under rapidly accelerated driving conditions. Thus Normalized FXLMS algorithm was developed to improve the control performance under the rapid acceleration. The advantage of Normalized FXLMS algorithm is that the step size is no longer constant. Instead, it varies with time. But there is one additional practical difficulty that can arise when a nonstationary input is used. If the input is zero for consecutive samples, then the step size becomes unbounded. So, in order to solve this problem. the Correlation FXLMS algorithm was developed. The Correlation FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Correlation FXLMS Is presented in comparison with that of the other FXLMS algorithms based on computer simulations.

  • PDF

Development of Moving Bandpass Filter for Improving Control Performance of Active Intake Noise Control under Rapid Acceleration (급가속 흡기계의 능동소음제어 성능향상을 위한 Moving Bandpass filter 개발)

  • Jeon, Ki-Won;Oh, Jae-Eung;Lee, Choong-Hui;Lee, Jung-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1016-1019
    • /
    • 2004
  • The study of the noise reduction of an automobile has been concentrated on the reduction of the automotive engine noise because the engine noise is the major cause of automotive noise. However, many studies of automotive engine noise led to the interest of the noise reduction of the exhaust and intake system. The method of the reduction of the induction noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space of the engine room. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the LMS (Least-Mean-Square) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, Filtered-X LMS (FXLMS) algorithm is applied to an ANC system. However, the convergence performance of LMS algorithm goes bad when the FXLMS algorithm is applied to an active control of the induction noise under rapidly accelerated driving conditions. So, in order to this problem, the modified FXLMS algorithm using Moving Bandpass Filter was proposed. In this study, MBPF was implemented and use ANC for automotive intake under revived rapidly accelerated driving conditions and it was verified its performance.

  • PDF