• Title, Summary, Keyword: 기계학습

Search Result 2,086, Processing Time 0.029 seconds

Game Test Automation with Reinforce Learning (강화학습을 이용한 게임 테스트 자동화)

  • Lee, Suk-ki;Kwak, Ho-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.25-28
    • /
    • 2018
  • 본 논문에서는 강화학습을 통한 게임 테스트 자동화를 제안한다. 게임 테스트의 일부가 게임을 플레이라는 것과 강화학습에 기반을 둔 인공 신경망 모델들이 게임플레이에 많은 성과를 거둔 것에 착안하여 테스트 케이스 자동 생셩 및 기계학습을 통한 테스트 자동화를 연구하였다. 테스트 관리자를 두어 게임 요소에 필수적인 테스트 케이스를 데이터 조합으로 생성하고, 테스트 케이스를 수행할 인공지능을 기계학습으로 작성하여 자동화 유지비용을 절감한다. 이 모델을 소형 게임에 시험적으로 적용하였고, 정상 작동을 확인하였다.

  • PDF

Korean Dependency Parsing Based on Learning Weights of Features (자질 가중치 학습을 이용한 한국어 의존파싱)

  • Kim, Young-Tae;Ra, Dong-Yul;Lim, SooJong
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.63-67
    • /
    • 2010
  • 본 논문에서는 자질(feature)의 가중치를 학습하여 이용하는 기계학습 기반 한국어 의존 파싱 기법을 소개한다. 이를 위하여 모든 가능한 의존관계에 대하여 각 의존관계마다 일정한 수의 자질을 생성한다. 자질마다 가중치에 의하여 그 중요도를 나타낸다. 자질의 가중치 값은 의존관계가 태깅된 구문구조 학습 말뭉치를 이용하여 학습한다. 이를 위해 본 논문에서는 간단한 가중치 기계학습 기법을 제시한다. 실험을 위한 언어 자원으로는 구구조부착 세종말뭉치를 변환하여 구한 의존관계 부착 말뭉치를 사용하였다. 실험 결과 약 86.5%의 정확률을 가지는 의존파싱이 가능함을 관찰하였다.

  • PDF

Development of Hydrological Variables Forecast Technology Using Machine Learning based Long Short-Term Memory Network (기계학습 기반의 Long Short-Term Memory 네트워크를 활용한 수문인자 예측기술 개발)

  • Kim, Tae-Jeong;Jung, Min-Kyu;Hwang, Kyu-Nam;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.340-340
    • /
    • 2019
  • 지구온난화로 유발되는 기후변동성이 증가함에 따라서 정확한 수문인자의 예측은 전 세계적으로 주요 관심사항이 되고 있다. 최근에는 고성능 컴퓨터 자원의 증가로 수문기상학 연구에서 동일한 학습량에 비하여 정확도의 향상이 뚜렷한 기계학습 구조를 활용하여 위성영상 기반의 대기예측, 태풍위치 추적 및 강수량 예측 등의 연구가 활발하게 진행되고 있다. 본 연구에는 기계학습 중 시계열 분석에 널리 활용되고 있는 순환신경망(Recurrent Neural Network, RNN) 기법의 대표적인 LSTM(Long Short-Term Memory) 네트워크를 이용하여 수문인자를 예측하였다. LSTM 네트워크는 가중치 및 메모리 요소에 대한 추가정보를 셀 상태에 저장하고 시계열의 길이 조정하여 모형의 탄력적 활용이 가능하다. LSTM 네트워크를 이용한 다양한 수문인자 예측결과 RMSE의 개선을 확인하였다. 따라서 본 연구를 통하여 개발된 기계학습을 통한 수문인자 예측기술은 권역별 수계별 홍수 및 가뭄대응 계획을 능동적으로 수립하는데 활용될 것으로 판단된다. 향후 연구에서는 LSTM의 입력영역을 Bayesian 추론기법을 활용하여 구성함으로 학습과정의 불확실성을 정량적으로 제어하고자 한다.

  • PDF

Learning data preprocessing technique for improving indoor positioning performance based on machine learning (기계학습 기반의 실내 측위 성능 향상을 위한 학습 데이터 전처리 기법)

  • Kim, Dae-Jin;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1528-1533
    • /
    • 2020
  • Recently, indoor location recognition technology using Wi-Fi fingerprints has been applied and operated in various industrial fields and public services. Along with the interest in machine learning technology, location recognition technology based on machine learning using wireless signal data around a terminal is rapidly developing. At this time, in the process of collecting radio signal data required for machine learning, the accuracy of location recognition is lowered due to distorted or unsuitable data for learning. In addition, when location recognition is performed based on data collected at a specific location, a problem occurs in location recognition at surrounding locations that are not included in the learning. In this paper, we propose a learning data preprocessing technique to obtain an improved position recognition result through the preprocessing of the collected learning data.

Financial Application of Integrated Optimization and Machine Learning Technique (최적화와 기계학습 결합기법의 재무응용)

  • Kim, Kyoung-jae;Park, Hoyeon;Cha, Injoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.429-430
    • /
    • 2019
  • 본 논문에서는 최적화 기법에 기반한 지능형 시스템의 재무응용사례를 다룬다. 본 연구에서 제안하는 모형은 대표적인 최적화 기법 중 하나인 시뮬레이티드 어니일링인데 이는 유전자 알고리듬과 유사한 최적화 성능을 가지고 있는 것으로 알려져 있으나 재무분야에서 응용된 사례가 거의 없다. 본 연구에서 제안하는 지능형 시스템은 시뮬레이티드 어니일링과 기계학습 기법을 결합한 것이다. 일반적으로 최적화와 기계학습 기법을 결합하는 방법은 특징선택(feature selection), 특징 가중치 최적화(feature weighting), 사례선택(instance selection), 모수 최적화(parameter optimization) 등의 방법이 있는데 선행연구에서 가장 많이 사용된 것은 특징선택에 두 기법을 결합하는 방식이다. 본 연구에서도 기계학습 기법을 재무 문제에 활용함에 있어서 최적의 특징선택을 위해 시뮬레이티드 어니일링을 결합하는 방식을 사용한다. 본 연구에서 제안된 기법의 유용성을 확인하기 위하여 실제 재무분야의 데이터를 활용하여 예측 정확도를 확인하였으며 그 결과를 통하여 제안하는 모형의 유용성을 확인할 수 있었다.

  • PDF

Design of an Intelligent Database System for Autonomous Machine Learning (자율형 기계학습을 위한 인텔리전트 데이터베이스 시스템 설계)

  • Lim, Jongtae;Shin, Haeran;Lim, Yujung;Hong, Yujin;Shin, Bokyoung;Lee, Hyeonbyeong;Park, Jaeyeol;Bok, Kyoungsoo;Yoo, Jaesoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • /
    • pp.13-14
    • /
    • 2019
  • 최근 기계학습이 중요하게 연구되고 있다. 기계학습을 활용한 응용을 위해서는 지능형 응답을 수행하기 위한 인텔리전트 데이터베이스 시스템이 요구된다. 본 논문에서는 자율형 기계학습을 위한 인텔리전트 데이터베이스 시스템을 설계한다. 제안하는 시스템은 자율 기계학습 플랫폼과 연동하여 수집된 데이터로부터 추출된 지식을 저장하고 이를 추천, 예측과 같은 서비스에 활용한다.

  • PDF

기계학습 모델 공격연구 동향: 심층신경망을 중심으로

  • Lee, Seulgi;Kim, KyeongHan;Kim, Byungik;Park, SoonTai
    • Review of KIISC
    • /
    • v.29 no.6
    • /
    • pp.67-74
    • /
    • 2019
  • 기계학습 알고리즘을 이용한 다양한 분야에서의 활용사례들이 우리 사회로 점차 확산되어가며, 기계학습을 통해 산출된 모델의 오동작을 유발할 수 있는 공격이 활발히 연구되고 있다. 특히, 한국에서는 딥러닝을 포함해 인공지능을 응용한 융합분야를 국가적 차원에서 추진하고 있으며, 만약 인공지능 모델 자체에서 발생하는 취약점을 보완하지 못하고 사전에 공격을 대비하지 않는다면, 뒤늦은 대응으로 인하여 관련 산업의 활성화가 지연될 수 있는 문제점이 발생할 수도 있다. 본 논문에서는 기계학습 모델에서, 특히 심층 신경망으로 구성되어 있는 모델에서 발생할 수 있는 공격들을 정의하고 연구 동향을 분석, 안전한 기계학습 모델 구성을 위해 필요한 시사점을 제시한다. 구체적으로, 가장 널리 알려진 적대적 사례(adversarial examples) 뿐 아니라, 프라이버시 침해를 유발하는 추론 공격 등이 어떻게 정의되는지 설명한다.

A Study on the Prediction of Learning Results Using Machine Learning (기계학습을 활용한 대학생 학습결과 예측 연구)

  • Kim, Yeon-Hee;Lim, Soo-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.695-704
    • /
    • 2020
  • Recently, There has been an increasing of utilization IT, and studies have been conducted on predicting learning results. In this study, Learning activity data were collected that could affect learning outcomes by using learning analysis. The survey was conducted at a university in South Chung-Cheong Province from October to December 2018, with 1,062 students taking part in the survey. First, A Hierarchical regression analysis was conducted by organizing a model of individual, academic, and behavioral factors for learning results to ensure the validity of predictors in machine learning. The model of hierarchical regression was significant, and the explanatory power (R2) was shown to increase step by step, so the variables injected were appropriate. In addition, The linear regression analysis method of machine learning was used to determine how predictable learning outcomes are, and its error rate was collected at about 8.4%.

Sensor Data Collection & Refining System for Machine Learning-Based Cloud (기계학습 기반의 클라우드를 위한 센서 데이터 수집 및 정제 시스템)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.165-170
    • /
    • 2021
  • Machine learning has recently been applied to research in most areas. This is because the results of machine learning are not determined, but the learning of input data creates the objective function, which enables the determination of new data. In addition, the increase in accumulated data affects the accuracy of machine learning results. The data collected here is an important factor in machine learning. The proposed system is a convergence system of cloud systems and local fog systems for service delivery. Thus, the cloud system provides machine learning and infrastructure for services, while the fog system is located in the middle of the cloud and the user to collect and refine data. The data for this application shall be based on the Sensitive data generated by smart devices. The machine learning technique applied to this system uses SVM algorithm for classification and RNN algorithm for status recognition.

Study on Automatic Bug Triage using Deep Learning (딥 러닝을 이용한 버그 담당자 자동 배정 연구)

  • Lee, Sun-Ro;Kim, Hye-Min;Lee, Chan-Gun;Lee, Ki-Seong
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1156-1164
    • /
    • 2017
  • Existing studies on automatic bug triage were mostly used the method of designing the prediction system based on the machine learning algorithm. Therefore, it can be said that applying a high-performance machine learning model is the core of the performance of the automatic bug triage system. In the related research, machine learning models that have high performance are mainly used, such as SVM and Naïve Bayes. In this paper, we apply Deep Learning, which has recently shown good performance in the field of machine learning, to automatic bug triage and evaluate its performance. Experimental results show that the Deep Learning based Bug Triage system achieves 48% accuracy in active developer experiments, un improvement of up to 69% over than conventional machine learning techniques.