• Title, Summary, Keyword: 마찰재

Search Result 546, Processing Time 0.038 seconds

Study of Tribological Characteristics Between Metallic friction materials and Brake Disk (금속계 마찰재와 제동디스크 간의 마찰특성 연구)

  • Kim, Sang-Ho;Park, Hyung-Chul;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.2080-2093
    • /
    • 2008
  • Disk brake system take charge of maximum braking energy among the mechanical brake systems for high speed train. For this reason, Metallic friction materials and heat resistant steel disk is adopted at disk brake system for high speed train. It was investigated tribological characteristics(friction coefficient, friction stability, wear rate and braking temperature) between some kinds of metallic friction materials and heat resistant steel disk. Cu-based friction material for high speed train have suitable tribological characteristics.

  • PDF

자동차용 마찰재에 사용되는 고체 윤활재($Sb_{2}S_{3}$)와 연마재 (ZrSiO$){4}$)의 상대량에 따른 마찰특성의 변화에 관한 연구

  • Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • /
    • pp.30-34
    • /
    • 1996
  • 자동차용 마찰재의 원료로 사용되는 고체 윤활제($Sb_{2}S_{3}$)와 연마재(ZrSiO$){4}$)의 상대량이 다른 3가지의 마찰재를 제조하여 그들의 마찰특성을 자동차용 Brake Dynamometer를 사용하여 연구하였다. 각각의 마찰재에 관하여 자동차 제동시에 나타나는 마찰계수의 변화와 Torque 변화 그리고 시험후의 마찰재와 rotor의 마모량을 측정하였다. 제동특성과 직접 관련 있는 것으로 알려져있는 마찰계수의 안정성은 $Sb_{2}S_{3}$이 상대량이 높을 때 좋은 특성을 나타내었으며, 반면에 ZrSiO$_{4}$의 상대량이 많은 경우에는 마찰계수의 안정성이 저하되었을 뿐 아니라 제동시의 torque 변화량도 증가하여, 자동차의 Judder현상을 해결하는데 좋지않은 경향을 나타내었다. 이는 마찰시에 계면에 형성되는 윤활막의 거동에 의한 현상이며 이때 마찰재 및 상대재의 마모량은 연마재의 양이 증가함에 따라 마모량이 증가 하였다.

  • PDF

The Studies on the Fabrication and Properties of Friction Materials toy Aluminium Alloy Disk (알루미늄 합금 디스크용 마찰재의 제조 및 그 특성에 관한 연구)

  • 손태관;장상희;제갈영순
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.22-28
    • /
    • 2003
  • This article deals with the manufacture and test results of asbestos-free friction material for Aluminium at toy disk. In order to obtain optimum formulation, various formulations of fibres, matrix, modifiers, fillers, etc were designed and evaluated. The constant friction and brake dynamometer tests were performed to know weak and strong point for each friction material. The C21 formulation of various tested formulations exhibited superior friction constant(0.38∼38), fade rate (18%) by JASO C406 test mode and maximum wear 1.6 mm. disc wear 0.08 mm by JASO C427 test mode. The surface morphology of AL alloy disk(before and after test) was observed by Scanning Electron Microscope(SEM) and Image Analyzer.

Friction and Wear Characteristics of Friction Material from Scrap Tire and Potassium Hexatitanate (폐타이어분말과 육티탄산칼륨를 이용한 마찰재의 마찰.마모 특성)

  • Park, Jong-Il;Kang, Dong-Heon;Kang, Suck-Choon;Chung, Chan-Kyo;Chung, Kyung-Ho;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.3-13
    • /
    • 2001
  • To resolve environmental problem of waste tire and asbestos and also to capitalize the wastes, we developed a new kind of friction material using scrap tire, potassium hexatitanate, filler, and friction modifier in which rubber made a continuous phase. The material containing 5, 20, 10, 20phr of potassium hexatitanate, phenol, friction modifier, $BaSO_4$, respectively showed good friction properties, high and stable coefficient or friction, and low wear rate.

  • PDF

A Study on the Performance of Friction Materials using Reduced Iron (환원분철을 이용한 마찰재의 성능에 관한 연구)

  • Kim, Byoung-Sam;Mun, Sang-Don;Chi, Chang-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.593-598
    • /
    • 2008
  • It was made a friction material of various kinds by adding 10%, 20% and 30% of reduced iron. It was obtained by a connected-reduced process in a blast furnace sludge and oxidized iron, instead of $BaSO_4$, which is already a used inorganic filling material among a component of a brake friction material. This was done by a basic physical property test, a friction performance test to use a brake dynamometer. Moreover, in case of an add in the friction material, instead of using $BaSO_4$, the more expensive filling material, the reduced iron was also better because it has an excellent a friction property of an exothermic temperature, wear, etc. was 10%. At G1 and G3 specimens, a shear strength and a bonding strength of the friction material was decreased to be able to increase an amount of the blast furnace sludge and the reduced iron, but an application of all friction materials appeared enough strength.

Seismic Fragility Analysis of a LNG Tank with Friction Pendulum System of Various Friction Coefficient (마찰재 물성변화에 따른 마찰진자시스템을 적용한 LNG 탱크의 지진취약도 분석)

  • Moon, Ji-Hoon;Kim, Ji-Su;Lee, Tae-Hyung;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • The friction pendulum system(FPS) is a kind of seismic isolation devices for isolating structures from an earthquake. To analyze the effect of friction materials used in the friction pendulum system, fragility analysis of LNG tank with seismic isolation system was conducted. In this study, titanium dioxide($TiO_2$) nanoparticles were incorporated into polyvinylidene fluoride(PVDF) matrix to produce friction materials attached to the FPS. The base moment of the concrete outer tank and the acceleration of the structure were evaluated from different mixing ratios of constituents for the friction materials. The seismic fragility curves were developed based on two types of limit state. It is confirmed that evaluation of combined fragility curves with several limit states can be applied to select the optimum friction material satisfying the required performance of the FPS for various infrastructure.

The Tribology Behavior On Porosity In Cu-Based Sintered Friction Materials (동계 소결 마찰재의 기공율에 대한 마찰특성 고찰)

  • 김기열;정진현;이범주;김재곤;권성태;최경진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • /
    • pp.21-27
    • /
    • 1995
  • 소결마찰재의 기공은 소결체의 기본 특성으로 제조공정에 따라 다양하게 형성되며, 기공량이 증가할수록 소결체의 강도나 경도를 낮추는 결과를 초래하지만, 수지령 마찰재료의 경우 일정량의 기공이 오히려 마찰특성에는 양호한 결과를 나타냈다. 소결 마찰재의 경우, 기공향은 제작공정상 성형압과 소결 가압력을 선정하는 기준이 되는 것이지만 아직까지 정량화된 결과가 알려져 있지 않다. 따라서 본 연구는 동계소결 마찰재의 제조공정에서 기본적으로 내재되는 기공이 마찰특성에 어떠한 영향을 주며 또한 이러한 영향에 따라 최적 마찰특성을 나타내는 기공량을 제시하고자 하였다. 소결마찰재의 기공율은 성형체 밀도와 소결 가압력을 임의로 변화시켜 기공향을 조절하였고, 이렇게 만들어진 시편들은 정속식 마찰시험기를 이용하여 마찰특성을 평가하였다. 결과의 분석은 반복이 있는 이원배치법을 이용한 통계 수단을 사용하여 분산분석을 실시하고, 최적의 마찰특성을 나타내는 성형체 밀도와 소결 가압력을 제시하고자 하였다.

  • PDF

Study of Tribological Characteristics Between Metallic Friction Materials and Brake Disk (금속계 마찰재와 제동디스크 간의 마찰특성 연구)

  • Kim, Sang-Ho;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.72-80
    • /
    • 2009
  • The tribiological characteristics such as friction coefficient, friction stability, wear rate and braking temperature between various types of metallic friction materials and heat resistant steel disk, were investigated by using lab-scale dynamometer. Friction materials for high speed train have higher friction coefficient and friction stability as compared to aircraft friction materials even though friction materials for high speed train have lower wear rate. In addition. Cu-matrix friction materials have higher temperature increase rate than Fe-matrix friction materials. All friction surfaces have Fe-base oxide layer after completing test.

Tribological Properties of Hybrid Friction Materials: Combining Low-steel and Non-steel Friction Materials (금속계와 유기계 마찰재의 분포에 따른 하이브리드 마찰재의 마찰 특성)

  • Kim, JinWoo;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.117-123
    • /
    • 2012
  • Tribological properties of hybrid type friction materials were studied. Hybrid friction materials were produced by combining non-steel(NS) and low-steel(LS) type friction materials. The emphasis of the investigation was given to possible synergistic effects from the two different friction materials, in terms of friction stability at high temperatures and the amplitude of friction oscillation, also known as stick-slip at low sliding speeds. The high temperature friction test results showed that the friction effectiveness of the hybrid friction material was well sustained compared to LS and NS friction materials. Wear resistance of the hybrid type was similar to LS friction materials. Examination of the rubbing surfaces after tests revealed that the friction characteristics of the hybrid friction material were attributed to the wear debris produced from low-steel friction materials, which were migrated to the surface of the non-steel friction material, forming new contact plateaus. The stick-slip amplitude and its frequency were pronounced when non-steel friction material was tested, while hybrid and low-steel types showed relatively small stick-slip amplitudes. These results suggest possible improvement of tribological properties by designing a hybrid composite of low-steel and non-steel friction materials.

Study of Friction Charactedstics of Non-asbestos Organic (NAO) and Semi-metallic Brake Pads During Automotive Braking (자동차 제동시 나타나는 마찰재의 마찰 특성에 관한 연구 (II. 비석면계 유기질 (Non-asbestos Organic) 마찰재와 반금속 (Semi-metallic) 마찰재의 마찰 특성 비교))

  • Kim, Seong-Jin;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.10-19
    • /
    • 1997
  • Frictional characteristics of two different types of automotive friction materials were studied. They were non-asbestos organic and semi-metallic friction materials. The two friction materials were tested using an inertial brake dynamometer to investigate friction stability, rooster tailing phenomena, temperature change during drags and stops. Results show that the level of the friction force is strong functions of time, temperature, and speed regardless of the type of friction materials. In particular, rooster tailing effects are pronounced in the case of semi-metallic friction materials compared to non-asbestos organic friction materials. The phenomena appear strongly dependent on raw materials contained in the friction materials.