• Title/Summary/Keyword: 문단 추출

Search Result 5, Processing Time 0.128 seconds

XML Document Keyword Weight Analysis based Paragraph Extraction Model (XML 문서 키워드 가중치 분석 기반 문단 추출 모델)

  • Lee, Jongwon;Kang, Inshik;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2133-2138
    • /
    • 2017
  • The analysis of existing XML documents and other documents was centered on words. It can be implemented using a morpheme analyzer, but it can classify many words in the document and cannot grasp the core contents of the document. In order for a user to efficiently understand a document, a paragraph containing a main word must be extracted and presented to the user. The proposed system retrieves keyword in the normalized XML document. Then, the user extracts the paragraphs containing the keyword inputted for searching and displays them to the user. In addition, the frequency and weight of the keyword used in the search are informed to the user, and the order of the extracted paragraphs and the redundancy elimination function are minimized so that the user can understand the document. The proposed system can minimize the time and effort required to understand the document by allowing the user to understand the document without reading the whole document.

Keyword Weight based Paragraph Extraction Algorithm (키워드 가중치 기반 문단 추출 알고리즘)

  • Lee, Jongwon;Joo, Sangwoong;Lee, Hyunju;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.504-505
    • /
    • 2017
  • Existing morpheme analyzers classify the words used in writing documents. A system for extracting sentences and paragraphs based on a morpheme analyzer is being developed. However, there are very few systems that compress documents and extract important paragraphs. The algorithm proposed in this paper calculates the weights of the keyword written in the document and extracts the paragraphs containing the keyword. Users can reduce the time to understand the document by reading the paragraphs containing the keyword without reading the entire document. In addition, since the number of extracted paragraphs differs according to the number of keyword used in the search, the user can search various patterns compared to the existing system.

  • PDF

Answer Extraction using Concept Rules in Concept-based Question-Answering System (개념 기반 질의-응답 시스템에서 개념 규칙을 이용한 해답 추출)

  • Kang, Yu-Hwan;Ahn, Young-Min;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.184-188
    • /
    • 2005
  • 본 논문에서는 개념 기반 질의-응답 시스템에서 개념 규칙을 이용하여 해답을 추출하는 방법에 대하여 기술한다. 개념 기반 질의-응답 시스템은 질의문의 각 유형별 개념 정보를 이용하여 질의문을 분석하고 해답을 추출하는 시스템이다. 질의문의 키워드들을 개념에 따라 분류하고, 질의 유형별로 공통적으로 나타나는 개념들을 이용하여 개념 프레임을 정의한다. 또한, 개념 정보와 해답이 들어 있는 문장과 문단에서 공통적으로 나타나는 구문 특성을 이용하여 해답 추출을 위한 규칙을 작성한다. 개념 규칙은 형태 정보와 구문 정보를 포함하며, 질의 유형별로 따로 작성한다. 작성된 규칙을 이용하여 문서로부터 해답이 들어 있는 문장과 문단을 추출한 후 질의문의 해답 유형에 해당하는 개체를 해답 후보로 제시한다. 실험 결과 개념 규칙을 이용한 해답 추출의 정확도가 매우 높게 나타났다.

  • PDF

Semi-supervised GPT2 for News Article Recommendation with Curriculum Learning (준 지도 학습과 커리큘럼 학습을 이용한 유사 기사 추천 모델)

  • Seo, Jaehyung;Oh, Dongsuk;Eo, Sugyeong;Park, Sungjin;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.495-500
    • /
    • 2020
  • 뉴스 기사는 반드시 객관적이고 넓은 시각으로 정보를 전달하지 않는다. 따라서 뉴스 기사를 기존의 추천 시스템과 같이 개인의 관심사나 사적 정보를 바탕으로 선별적으로 추천하는 것은 바람직하지 않다. 본 논문에서는 최대한 객관적으로 다양한 시각에서 비슷한 사건과 인물에 대해서 판단할 수 있도록 유사도 기반의 기사 추천 모델을 제시한다. 길이가 긴 문서 사이의 유사도를 측정하기 위해 GPT2 [1]언어 모델을 활용했다. 이 과정에서 단방향 디코더 모델인 GPT2 [1]의 단점을 추가 학습으로 개선했으며, 저장 공간의 효율과 핵심 문단 추출을 위해 BM25 [2]함수를 사용했다. 그리고 준 지도 학습 [3]을 통해 유사도 레이블링이 되어있지 않은 최신 뉴스 기사에 대해서도 자가 학습을 진행했으며, 이와 함께 길이가 긴 문단에 대해서도 효과적으로 학습할 수 있도록 문장 길이를 기준으로 3개의 단계로 나누어진 커리큘럼 학습 [4]방식을 적용했다.

  • PDF

Document Analysis based Main Requisite Extraction System (문서 분석 기반 주요 요소 추출 시스템)

  • Lee, Jongwon;Yeo, Ilyeon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.401-406
    • /
    • 2019
  • In this paper, we propose a system for analyzing documents in XML format and in reports. The system extracts the paper or reports of keywords, shows them to the user, and then extracts the paragraphs containing the keywords by inputting the keywords that the user wants to search within the document. The system checks the frequency of keywords entered by the user, calculates weights, and removes paragraphs containing only keywords with the lowest weight. Also, we divide the refined paragraphs into 10 regions, calculate the importance of the paragraphs per region, compare the importance of each region, and inform the user of the main region having the highest importance. With these features, the proposed system can provide the main paragraphs with higher compression ratio than analyzing the papers or reports using the existing document analysis system. This will reduce the time required to understand the document.