• Title/Summary/Keyword: 브레이크 시스템

Search Result 213, Processing Time 0.03 seconds

Optimal Design of a Magnetorheological Haptic Gripper Reflecting Grasping Force and Rolling Moment from Telemanipulator (원격조작기의 악력과 회전모멘트를 고려한 MR 햅틱 그리퍼의 최적설계)

  • Nguyen, Quoc-Hung;Oh, Jong-Seok;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.459-467
    • /
    • 2012
  • In this work, the configuration of a haptic gripper featuring magnetorheological(MR) brakes is proposed and an optimal design of the MR brakes for the haptic griper is performed considering the required braking torque, the uncontrollable torque(zero-field friction torque) and mass of the brakes. Several configurations of MR brake is proposed such as disc-type, serpentine-type and hybrid-type. After the configurations of the MR brakes are proposed, braking torque of the brakes is analyzed based on Bingham rheological model of the MR fluid. The zero-field friction torque of the MR brakes is also analyzed. An optimization procedure based on finite element analysis integrated with an optimization toolbox is developed for the MR brakes. The purpose of the optimal design is to find optimal geometric dimensions of the MR brake structure that can produce the required braking torque and minimize the mass of the MR brakes. In addition, the uncontrollable torque of the MR brakes is constrained to be much smaller than the required braking torque. Based on the developed optimization procedure, optimal solution of the proposed MR brakes are achieved and the best MR brake is determined. The working performance of the optimized MR brake is then investigated.

차량 EMB 시스템의 고장 검출 및 대처 방안 설계

  • Geum, Dae-Hyeon;Ban, Dong-Hun;Gwon, Su-Hyeon;Jin, Seong-Ho;Lee, Seong-Hun
    • Information and Communications Magazine
    • /
    • v.34 no.5
    • /
    • pp.19-26
    • /
    • 2017
  • Electromechanical Brake(EMB)시스템은 유압 대신 전동식 액츄에이터를 이용하여 제동력을 발생시키는 브레이크 장치인 Brake-by-Wire(BBW) 시스템의 구성요소 이다. EMB 시스템은 기존 유압식 브레이크 시스템과 비교하여 친환경적이며, 설계의 자유도가 높고, 제동 응답성 및 제어 성능이 뛰어난 장점을 가진다. 하지만 전자 전기적으로 시스템 구성이 복잡해 짐에 따라 고장에 대한 안정성 부문이 설계시 충분히 고려되어야 한다. 본 논문에서는 차량 EMB 시스템 설계시 신뢰성을 향상을 위해 고려해야 설계 방안에 대해서 기술한다. 크게 시스템, 센서, 모터 분야에 대해 고장 요소 및 대처 방안 설계에 대해 개괄적으로 소개한다.

An Experimental Study on Brake Judder via the Frequency Analysis of the Brake System and Vehicle System of a Commercial Vehicle (상용차량의 브레이크 시스템과 차량 시스템 주파수 분석을 통한 브레이크 저더의 실험적 고찰)

  • Moon, ll-Dong;Kim, Jong-Dae;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1131-1138
    • /
    • 2007
  • This paper studies experimentally on the building-up process for the amplitude of a commercial truck vibration induced by brake judder. A front axle drum equipped with a drum brake system is utilized for this experiment. A brake dynamo test, a real vehicle ride test and a real vehicle braking test are performed for the analysis of brake judder. The brake dynamo test measures judder by applying brake chamber pressures of 1, 2 and 3 bar at initial brake pad temperatures of $100^{\circ}C$ and $150^{\circ}C$. In order to assess the vertical acceleration at the front axle, the real vehicle ride test on a straight test road with velocities of 20, 40, 60 and 80 km/h is performed. The real vehicle braking test is carried out at the deceleration rate of 0.2g from a velocity of 90km/h for evaluating the vertical, lateral and longitudinal accelerations both at the front axle and at the cab floor under the driver's seat. The magnitudes and frequencies of the measured peak accelerations from the brake dynamo test, the real vehicle ride test and the real vehicle braking test are comparatively analyzed. This paper shows that the vibration produced by brake judder is built up due to the brake system's peak acceleration frequency being close to the vehicle ride mode's frequency.

A study on speed-sensitive vehicle brake light system using LED (LED를 이용한 속도 감응형 차량용 브레이크등 시스템)

  • Kim, Tae-Jin;Kim, Hyung-Jun;Park, Seong-Jun;Park, In-Soo;Park, Sung-Won;Kim, Sung-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.809-810
    • /
    • 2016
  • In this study, Speed-sensitive vehicle brake using the LED, When the driver presses the brake pedal, range step while being turned in connection taillights brake of the vehicle, such as speed-sensitive vehicle brake using the LED, It is turned on according to the deceleration of the vehicle to be series of points are displayed. The rear vehicle can prevent collision about an abrupt stop of preceding vehicle by perceiving deceleration state of preceding vehicle easier and faster. Also, if the inter-vehicle distance by using an ultrasonic sensor is closer than a certain distance, the emergency light turns on to convey the situation to the driver of the rear vehicle with a buzzer.

  • PDF

Numerical and Experimental Analysis for Disc Brake Squeal Induced by Caliper Mode (캘리퍼 모드에 의한 디스크 브레이크 스퀼 시험 및 해석)

  • Choi, Hoil;Kang, Jaeyoung;Gil, Hojong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1351-1358
    • /
    • 2014
  • This study numerically simulates brake squeal and validates it experimentally by using a lab-scaled brake dynamometer. The system frequencies of the disc brake are traced with respect to the brake pressure by using a modal test and FEM. Then, the squeal frequencies measured from the brake dynamometer are found to correspond to the brake system mode with the dominant displacement of the caliper and pad. Furthermore, a complex eigenvalue analysis conducted using the finite element model confirms that the caliper mode generating the rotational displacement of the pad becomes unstable owing to the negative friction-velocity slope.

Braking Force Test Evaluation Dynamometer Development of Vehicle (차량용 브레이크 제동력 평가 다이나모미터 개발)

  • Kwon, Byeong-Heon;Yoon, Pil-Hwon;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.56-65
    • /
    • 2019
  • Recently, automobiles have been developed for safety and environmental reasons. Particularly, awareness of automobile safety is changing significantly. As a result, safety systems developed by ADAS have emerged. However, the period of mass production through ADAS development and test evaluation is long. Therefore, in this paper, we develop a brake dynamometer to shorten the time required for ADAS development and test evaluation. In addition, the developed brake dynamometer satisfies the international standard JIS D-0210, and the user can evaluate the braking force by selecting test conditions and test method for each mode of ADAS. We use the ACC, LKAS, and AEB scenarios proposed in previous studies to verify the reliability of the developed brake dynamometer. The developed brake dynamometer was verified by comparing the test values and the calculated values using theoretical formulas of the proposed ADAS mode based on previous studies. In addition, it is expected that the performance evaluation of brake parts for each ADAS mode will be possible in an environment where the vehicle test of ADAS is not possible in the future.

Controller Design for Electric Parking Brake(EPB) System (전자제어식 주차 브레이크(EPB) 시스템의 제어기 설계)

  • Lee, Doo-Ho;Lee, Choong-Woo;Chung, Han-Byul;Chung, Chung-Choo;Son, Young-Seop;Yoon, Pal-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1842-1845
    • /
    • 2006
  • 본 논문에서는 차량용 전자제어식 주차 브레이크(Electric Parking Brake, EPB) 시스템 제어에 효과적인 제어기를 논의한다. 이를 위하여 EPB 시스템의 동작 요건과 고유 특성을 고려하여 제어 사양을 정하고 이를 만족시키는 세 가지 제어기(Bang-bang, 선형 P, 비선형 P 제어기)를 제안한다. 또한 제안된 제어기들의 특성 및 성능을 과도응답과 강인성 측면에서 분석하였다. 이를 위해 EPB 시스템을 주파수 영역과 시간 영역에서 모델링하고, 설계된 제어기들의 성능을 모의실험을 통해 비교, 검증한다.

  • PDF

A Study on the Development of Composite Brake System through Analysis of advanced Braking Performance Factors (제동성능 고급화 인자 분석을 통한 복합재 제동시스템 개발에 관한 연구)

  • Shim, J.H.;Shin, U.H.;Lee, J.H.;Hwang, S.R.;Yim, W.S.;Kim, B.C.;Lim, D.W.;Hyun, E.J.;Lee, J.M.;Kim, H.K.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2020
  • The luxury car market has been steadily growing for the last 10 years and it might keep expanding in the future. Furthermore, it is expected to be a very competitive market because luxury cars are considred to reflect the technology level of motor companies. For this reason, it is very important for motor companies to improve performances of luxury vehicles. However, it takes years for the companies to increase the technology level for the high performances. In this paper, we aim to analyze the technologies for high quality brake perfomances through investigation of two luxury vehicle models and develop a new high performance brake system. First, we found out a variety of effective factors for the high performances. Second, we conducted the brake performance analysis to figure out the relationship between brake effort and brake feeling. Finally, we develped the new brake system using carbon ceramic composite materials to satisfy the high quality brake performances.

Performance Analysis of Electronic Parking Brake (전자 제어식 주차브레이크(EPB)의 성능분석)

  • Kim, Sung-Mo;Jeong, Jong-Yeol;Shin, Chang-Woo;Lim, Won-Sik;Cha, Suk-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.751-755
    • /
    • 2011
  • Electric Parking Brake(EPB) is the system operated by electric control actuator. It differs from the mechanical parking brake system which is operated by lever and pedal in need of human power. The EPB system is composed of DC motor, helical and differential epicyclic gear, screw, cables, and sensor. This paper describes about the EPB system mathematically and constructs a modeling of the EPB system using MATLAB/SIMULINK. Especially, SimMechanics library in SIMULINK is used to make each parts of system a module. By made modeling of the friction torque between bolt and nut. Cable tension can be maintained after the motor operating stops.