• Title/Summary/Keyword: 손상 메커니즘

Search Result 182, Processing Time 0.028 seconds

Protective Effects of Traditional Korean Medicine Preparations, Herbs, and Active Compounds on the Blood-brain Barrier in Ischemic Stroke Models (허혈성 뇌졸중 모델에서 혈액-뇌 장벽에 보호효과를 나타내는 한약처방, 한약재 및 활성화합물)

  • Shin, Su Bin;Jang, Seok Ju;Lee, Na Gyeong;Choi, Byung Tae;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.550-566
    • /
    • 2022
  • Stroke is among the leading causes of death and long-term physical and cognitive disabilities worldwide, affecting an estimated 15 million people annually. The pathophysiological process of stroke is complicated by multiple and coordinated events. The breakdown of the blood-brain barrier (BBB) in people with stroke can significantly contribute to the development of ischemic brain injury. Therefore, BBB disruption is recognized as a hallmark of stroke; thus, it is important to develop novel therapeutic strategies that can protect against BBB dysfunction in ischemic stroke. Traditional medicines are composed of natural products, which represent a promising source of new ingredients for the development of conventional medicines. Indeed, several studies have shown the effectiveness of Korean medicine on stroke, highlighting the value of Korean medicinal treatment for ischemic stroke. This review summarizes the current information and underlying mechanisms regarding the ameliorating effects of the formula, decoction, herbs, and active components of traditional Korean medicine on cerebral ischemia-induced BBB disruption. These traditional medicines were shown to have protective effects on the BBB in many cellular and animal ischemia models of stroke, and experiments in various animal species, such as mice and rats. In addition, they showed brain-protective effects by protecting the BBB through the regulation of tight junction proteins and matrix metalloproteinase-9, reducing edema, neuroinflammation, and neuronal cell death. We hope that this review will help promote further investigation into the neuroprotective effects of traditional Korean medicines and stimulate the performance of clinical trials on Korean herbal medicine-derived drugs in patients with stroke.

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer (벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개)

  • Jaewon Lee;Jung-Woo Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.228-243
    • /
    • 2023
  • Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.

Evaluation of Bonding Performance of Hybrid Materials According to Laser and Plasma Surface Treatment (레이저 및 플라즈마 표면처리에 따른 이종소재 접합특성평가)

  • Minha Shin;Eun Sung Kim;Seong-Jong Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.441-447
    • /
    • 2023
  • Recently, as demand for high-strength, lightweight materials has increased, there has been great interest in joining with metals. In the case of mechanical bonding, such as bolting and riveting, chemical bonding using adhesives is attracting attention as stress concentration, cracks, and peeling occur. In this paper, surface treatment was performed to improve the adhesive strength, and the change in adhesive strength was analyzed. For the adhesive strength test were conducted with Carbon Fiber Reinforced Plastic(CFRP), CR340(Steel), and Al6061(Aluminum), and laser and plasma surface treatment were used. After plasma surface treatment, the adhesive strength improved by 7.3% and 39.2% in CFRP-CR340 and CFRP-Al6061, respectively. CR340-Al6061 was improved by 56.2% in laser surface treatment. Surface free energy(SFE) was measured by contact angle after plasma treatment, and it is thought that the adhesion strength was improved by minimizing damage through a chemical reaction mechanism. For laser surface treatment, it is thought that creates a rough bonding surface and improves adhesive strength due to the mechanical interlocking effect. Therefore, surface treatment is effect to improve adhesive strength, and based on this paper, the long-term fatigue test will be conducted to prevent fatigue failure, which is a representative cause of actual structural damage.

Effects of sucralose on memory and cognitive function relief in a scopolamine-induced amnesia model (Scopolamine으로 인한 건망증 모델에서 sucralose의 기억력 및 인지기능 완화 효과)

  • Eun-mi Jung;Eunhong Lee;Hyun-Ji Kwon;Jihye Lee;Hye-jeong Kim;Jinhan Park;Jongwon Lee;Ji Wook Jung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1567-1579
    • /
    • 2023
  • Sucralose is used as a sucrose alternative in the food sector and is a globally approved pyrogenic, high-intensity artificial sweetener. However, due to the lack of studies on the effects of sweeteners on the brain, this study confirmed whether short-term consumption of sucralose has cognitive and memory protective effects in scopolamine-induced memory-injured animal models. After oral administration of sucralose 2, 5, and 10 mg/kg, scopolamine (1 mg/kg) was administered to the control group and the drug group 30 minutes later, and saline was administered intraperitoneally to the normal group, followed by behavioral experiments As a result of the experiment, Y-Maze, passive avoidance, and Morris WaterMaze recovered more than 10% of cognitive function compared to the control group. In addition, as a result of measuring proinflammatory cytokines, sucralose was found to inhibit IL-6 and TNF-α by more than 30%, and we observed that the expression level of ERK-CREB with intracellular signaling mechanisms increased in a concentration-dependent manner. Therefore, it suggests that sucralose is associated with functional foods for the prevention of functional food patients.

Numerical Modeling of Hydrogen Embrittlement-induced Ductile Fracture Using a Gurson-Cohesive Model (GCM) and Hydrogen Diffusion (Gurson-Cohesive Model(GCM)과 수소 확산 모델을 결합한 수소 취화 파괴 해석 기법)

  • Jihyuk Park;Nam-Su Huh;Kyoungsoo Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.267-274
    • /
    • 2024
  • Hydrogen embrittlement fracture poses a challenge in ensuring the structural integrity of materials exposed to hydrogen-rich environments. This study advances our comprehension of hydrogen-induced fracture through an integrated numerical modeling approach. In addition, it employs a ductile fracture model named the Gurson-cohesive model (GCM) and hydrogen diffusion analysis. GCM is employed as a fracture model that combines the Gurson model to illustrate the continuum damage evolution and the cohesive zone model to describe crack surface discontinuity and softening behavior. Moreover, porosity and stress triaxiality are considered as crack initiation criteria . A hydrogen diffusion analysis is also integrated with the GCM to account for hydrogen enhanced decohesion (HEDE) mechanisms and their subsequent impacts on crack initiation and propagation. This framework considers the influence of hydrogen on the softening behavior of the traction-separation relationship on the discontinuous crack surface. Parametric studies explore the sensitivity to diffusion properties and hydrogen-induced fracture properties. By combining numerical models of hydrogen diffusion and the ductile fracture model, this study provides an understanding of hydrogen-induced fracture and thereby contributes significantly to the ongoing efforts to design materials that are resilient to hydrogen embrittlement in practical engineering applications.

Cellular Localization and Translocation of Duplication and Alternative Splicing Variants of Olive Flounder Phospholipase C-δ1 (넙치 3가지 타입 인지질가수분해효소(PLC-δ1)의 세포 내 위치 및 이동)

  • Kim, Na Young;Kim, Moo-Sang;Jung, Sung Hee;Kim, Myoung Sug;Cho, Mi Young;Chung, oon Ki;Ahn, Sang Jung
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1369-1375
    • /
    • 2017
  • The purpose of this study was to investigate the cellular characterization of phospholipase C-${\delta}1$ in olive flounders (Paralichthys olivaceus). In general, phospholipase C signaling pathways are distributed in nuclei at plasma membranes and in cytoplasms, although the pathways' nuclear localization mechanisms are unclear. P. olivaceus duplicates type-A PoPLC-${\delta}1$ (PoPLC-${\delta}1A$), which has a high similarity to the human isoform PLC-${\delta}$; type-B PoPLC-${\delta}1$ (PoPLC-${\delta}1B$ [Sf]), which has a low similarity to the human isoform PLC-${\delta}$ and the alternative splice variant PoPLC-${\delta}1B$ (Lf), which has a nuclear localization signal (NLS) and a nuclear export signal (NES) for nuclear imports and exports, respectively. This study confirmed the effects of the cellular localization and translocation of GFP-tagged PoPLC-${\delta}1A$, PoPLC-${\delta}1B$ (Sf) and PoPLC-${\delta}1B$ (Lf). It administered treatments of $Ca^{2+}$ ionophore ionomycin and endoplasmic reticulum (ER)-$Ca^{2+}$ pump inhibitor thapsigargin to hirame natural-embryo (HINAE) cells. A laser-scanning confocal microscope was used. GFP-tagged PoPLC-${\delta}1A$ was distributed to the cellular organelles, rather than to the cytoplasms and cytomembranes, when PoPLC-${\delta}1B$ (Lf) and PoPLC-${\delta}1B$ (Sf) were localized at the plasma membranes. The treatments of ionomycin and thapsigargin showed the accumulation of PoPLC-${\delta}1A$ in the nuclei when PoPLC-${\delta}1B$ (Lf) nucleocytoplasmic shuttling and PoPLC-${\delta}1B$ (Sf) nucleocytoplasmic shuttling were not observed. The results were the first evidence that PoPLC-${\delta}1A$, which contains functional, intact NES sequences, has a main role in nucleocytoplasmic shuttling and translocation in fish.

Study on the Mechanism of Manifestation of Ecological Toxicity in Heavy Metal Contaminated Soil Using the Sensing System of Earthworm Movement (지렁이 움직임 감지 시스템을 이용한 중금속 오염 토양의 생태독성 발현 메커니즘에 대한 연구)

  • Lee, Woo-Chun;Lee, Sang-Hun;Jeon, Ji-Hun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.399-408
    • /
    • 2021
  • Natural soil was artificially contaminated with heavy metals (Cd, Pb, and Zn), and the movement of earthworm was characterized in real time using the ViSSET system composed of vibration sensor and the other components. The manifestation mechanism of ecological toxicity of heavy metals was interpreted based on the accumulative frequency of earthworm movement obtained from the real-time monitoring as well as the conventional indices of earthworm behavior, such as the change in body weight before and after tests and biocumulative concentrations of each contaminant. The results showed the difference in the earthworm movement according to the species of heavy metal contaminants. In the case of Cd, the earthworm movement was decreased with increasing its concentration and then tended to be increased. The activity of earthworm was severely increased with increasing Pb concentration, but the movement of earthworm was gradually decreased with increasing Zn concentration. The body weight of earthworm was proved to be greatly decreased in the Zn-contaminated soil, but it was similarly decreased in Cd- and Pb-contaminated soils. The bioaccumulation factor (BAF) was higher in the sequence of Cd > Zn > Pb, and particularly the biocumulative concentration of Pb did not show a clear tendency according to the Pb concentrations in soil. It was speculated that Cd is accumulated as a metallothionein-bound form in the interior of earthworm for a long time. In particular, Cd has a bad influence on the earthworm through the critical effect at its higher concentrations. Pb was likely to reveal its ecotoxicity via skin irritation or injury of sensory organs rather than ingestion pathway. The ecotoxicity of Zn seemed to be manifested by damaging the cell membranes of digestive organs or inordinately activating metabolism. Based on the results of real-time monitoring of earthworm movement, the half maximal effective concentration (EC50) of Pb was estimated to be 751.2 mg/kg, and it was similar to previously-reported ones. The study confirmed that if the conventional indices of earthworm behavior are combined with the results of newly-proposed method, the mechanism of toxicity manifestation of heavy metal contaminants in soils is more clearly interpreted.

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Impact-Resistance Behavior under Impact Loading (충돌하중을 받는 이방향 비부착 프리스트레스트 콘크리트 패널부재의 충돌저항성능에 대한 실험적 거동 평가)

  • Yi, Na-Hyun;Lee, Sang-Won;Lee, Seung-Jae;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.485-496
    • /
    • 2013
  • In recent years, frequent terror or military attacks by explosion or impact accidents have occurred. Examplary case of these attacks were World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. These attacks of the civil infrastructure have induced numerous casualties and property damage, which raised public concerns and anxiety of potential terrorist attacks. However, a existing design procedure for civil infrastructures do not consider a protective design for extreme loading scenario. Also, the extreme loading researches of prestressed concrete (PSC) member, which widely used for nuclear containment vessel, gas tank, bridges, and tunnel, are insufficient due to experimental limitations of loading characteristics. To protect concrete structures against extreme loading such as explosion and impact with high strain rate, understanding of the effect, characteristic, and propagation mechanism of extreme loadings on structures is needed. Therefore, in this paper, to evaluate the impact resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, impact tests were carried out on $1400mm{\times}1000mm{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PS), prestressed concrete with rebar (PSR, general PSC) specimens. According to test site conditions, impact tests were performed with 14 kN impactor with drop height of 10 m, 5 m, 4 m for preliminary tests and 3.5 m for main tests. Also, in this study, the procedure, layout, and measurement system of impact tests were established. The impact resistance capacity was measured using crack patterns, damage rates, measuring value such as displacement, acceleration, and residual structural strength. The results can be used as basic research references for related research areas, which include protective design and impact numerical simulation under impact loading.

Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A (벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.382-393
    • /
    • 2020
  • The engineered barrier system of high-level radioactive waste disposal must maintain its performance in the long term, because it must play a role in slowing the rate of leakage to the surrounding rock mass even if a radionuclide leak occurs from the canister. In particular, it is very important to clarify gas dilation flow phenomenon clearly, that occurs only in a medium containing a large amount of clay material such as a bentonite buffer, which can affect the long-term performance of the bentonite buffer. Accordingly, DECOVALEX-2019 Task A was conducted to identify the hydraulic-mechanical mechanism for the dilation flow, and to develop and verify a new numerical analysis technique for quantitative evaluation of gas migration phenomena. In this study, based on the conventional two-phase flow and mechanical behavior with effective stresses in the porous medium, the hydraulic-mechanical model was developed considering the concept of damage to simulate the formation of micro-cracks and expansion of the medium and the corresponding change in the hydraulic properties. Model verification and validation were conducted through comparison with the results of 1D and 3D gas injection tests. As a result of the numerical analysis, it was possible to model the sudden increase in pore water pressure, stress, gas inflow and outflow rate due to the dilation flow induced by gas pressure, however, the influence of the hydraulic-mechanical interaction was underestimated. Nevertheless, this study can provide a preliminary model for the dilation flow and a basis for developing an advanced model. It is believed that it can be used not only for analyzing data from laboratory and field tests, but also for long-term performance evaluation of the high-level radioactive waste disposal system.