• Title/Summary/Keyword: %EC%87%84%EC%A0%95

Search Result 2, Processing Time 0.02 seconds

Weeding Efficacy and Phytotoxicity Evaluation of Soil-Applied Herbicides for Potential Use in Sorghum (수수 재배시 적용 제초제 선발을 위한 약효 및 약해 평가)

  • Hwang, Jae-Bok;Park, Tae-Seon;Park, Hong-Kyu;Kim, Hak-Sin;Choi, In-Bae;Koo, Bon-Il;Bae, Hee-Soo
    • Weed & Turfgrass Science
    • /
    • v.5 no.2
    • /
    • pp.82-87
    • /
    • 2016
  • Herbicide options for weed control in sorghum is very limited, hence there is a need for exploring potential herbicides. Sorghum herbicide tolerance field trails were conducted at two locations, Yaechoun, Gyeongsangbuk-do, and Miryang, Gyeongsangnam-do, in 2013. Tolerance of sorghum was evaluated following the pre-emergence application of methabenzthiazuron 70% (WP), simazine 50% (WP), oxadiargyl 1.7% (EC), and dimethenamid-P 5% + pendimethalin 20% (EC) at the standard rate 157.5 g, 75 g, 5.1 g, and 75 g a.i. $10a^{-1}$, respectively. As well as double the standard rate. On a phytotoxicity scale of 0 to 9, methabenzthiazuron (WP) induced injury to sorghum up to level 1 at the standard rate and to 3 at double the rate, but did not significantly affect the yield any statistical difference from the untreated. Simazine (WP) induced phytotoxicity up to levels 2 and 4 at single and double rates, respectively. Simazine (WP) did not significantly affect yield: however, the values were numerically lower than those in the methabenzthiazuron (WP) treatment. Oxidiargyl (EC) and dimethenamid + pendimethalin (EC) induced no or slight phytotoxicity; however they failed to provide effective weed control at the standard rate (32 and 68% control, respectively). Out of the tested, methabenzthiazuron (WP) was found to have potential for use in sorghum whereas the other herbicides caused unacceptable levels of injury.

Synergistic effect of phosphate solubilization by Burkholderia strains isolated from button mushroom bed (양송이배지로부터 분리한 Burkholderia균의 인산가용화 공조효과)

  • Park, Ji-Hoon;Han, Chang-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.183-189
    • /
    • 2017
  • This study investigated the synergistic effect of single inoculation and co-inoculation of phosphate-solubilizing bacteria (PSB) Burkholderia metallica JH-7 and Burkholderia contaminans JH-15. Phosphate-solubilizing abilities of these strains were assessed by measuring phosphorus content in culture media that were singly inoculated or co-inoculated with these strains for 7 days. B. metallica JH-7 was found to release the highest content of soluble phosphorus ($140.80{\mu}g\;mL^{-1}$ ) into the medium, followed by single inoculation of B. contaminans JH-15 ($135.95{\mu}g\;mL^{-1}$ ) and co-inoculation of two strains ($134.84{\mu}g\;mL^{-1}$ ). The highest pH reduction, organic acid production, and glucose consumption were observed in the medium inoculated with B. metallica JH-7 alone compared with that in the medium co-inoculated with both the strains. Results of a plant growth promotion bioassay showed 17.4% and 7.48% higher leaf and root growth, respectively, in romaine lettuce inoculated with B. metallica JH-7 alone than in romaine lettuce inoculated with a control strain. However, no significant difference was observed between single inoculation and co-inoculation of these strains with respect to phosphorus release and plant growth. Although the results of the present study did not show the synergistic effect of phosphate solubilization by the PSB strains examined, these results indicate that treatment with PSB exerts a beneficial effect on crop growth.