• Title/Summary/Keyword: 신경회로망

Search Result 2,053, Processing Time 0.132 seconds

Active pulse classification algorithm using convolutional neural networks (콘볼루션 신경회로망을 이용한 능동펄스 식별 알고리즘)

  • Kim, Geunhwan;Choi, Seung-Ryul;Yoon, Kyung-Sik;Lee, Kyun-Kyung;Lee, Donghwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.106-113
    • /
    • 2019
  • In this paper, we propose an algorithm to classify the received active pulse when the active sonar system is operated as a non-cooperative mode. The proposed algorithm uses CNN (Convolutional Neural Networks) which shows good performance in various fields. As an input of CNN, time frequency analysis data which performs STFT (Short Time Fourier Transform) of the received signal is used. The CNN used in this paper consists of two convolution and pulling layers. We designed a database based neural network and a pulse feature based neural network according to the output layer design. To verify the performance of the algorithm, the data of 3110 CW (Continuous Wave) pulses and LFM (Linear Frequency Modulated) pulses received from the actual ocean were processed to construct training data and test data. As a result of simulation, the database based neural network showed 99.9 % accuracy and the feature based neural network showed about 96 % accuracy when allowing 2 pixel error.

Human Iris Recognition Using Gabor Transform and Neural Network (Gabor 변환과 신경회로망을 이용한 홍채인식)

  • 조성원;성혁인;이필주;임철수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.397-401
    • /
    • 1997
  • 본 논문은 신경회로망과 Gabor변환을 홍채인식에 대한 연구이다. 현재 재발되고 있는 신원확인을 위한 여러 가지 인식 시스템 중 홍채인식의 특성과 비교우위적 장점을 소개하고, LVQ 신경회로망을 효과적인 초기화 방법과 Gabor변환을 이용한 홍채테이터의 특징추출에 대하여 논한다.

  • PDF

Automatic Segmentation of Positive Nuclei and Negative Nuclei on Color Breast Carcinoma Cell Image Using Texture Feature and Neural Network Classification (칼라 유방암조직영상에서 질감 특성과 신경회로망을 이용한 양성세포핵과 음성세포핵의 자동 분할)

  • 최현주;허민권;최흥국;김상균;최항묵;박세명
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.422-424
    • /
    • 1999
  • 본 논문에서는 질감 특징과 신경회로망을 이용한 유방암조직영상의 분할 방법을 제안한다. 신경회로망의 입력 노드에 사용될 질감 특징을 얻기 위해 10개의 영상에 대해 각 영역(양성세포핵, 음성세포핵, 배경)에서 10개씩의 화소를 선택하고, 그 화소를 중심으로 하는 5$\times$5 영역 30개를 획득, 총 300개의 영역에 대해 R, G, B 각각의 밴드에서 18개의 질감특징을 추출한다. 54개의 입력노드, 28개의 은닉노드, 3개의 출력노드의 구조를 가진 신경회로망을 구성하고, 역전파 학습 알고리즘을 사용하여 신경회로망을 최대오차율이 10-3보다 작을 때까지 학습시킨다. 학습에 의해 획득되어진 분류기를 이용하여 유방암 조직 세포영상을 양성세포핵, 음성세포핵, 배경부분으로 자동 분할한다.

  • PDF

Personalized Research Agent System Based on User Model Neural Network (사용자 모델 신경회로망을 기반으로 한 사용자 중심의 리서치 에이전트 시스템)

  • 송종길;김유신;조영임
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.321-323
    • /
    • 1999
  • 본 논문에서는 사용자가 자신이 연구하고 있는 분야에 관련된 웹 문서를 스스로 찾아서 보여 주는 PReA 시스템을 구현한다. 사용자의 성향을 파악하기 위해서 미리 작성된 서지 정보데이터를 사용자가 사용하는 것을 관찰하여 사용자 모델 신경회로망을 구축한다. 사용자 모델 신경회로망은 단어의 부하와 단어 사이의 부하로 구성되어 있어서 사용자의 정보 요구의 의미를 나타낼 수 가 있다. 사용자 모델 신경회로망을 기반으로 질의어를 생성하고 웹문서를 검색하며 검색된 문서에 대해 순위를 정한다. 순위가 정해진 문서중 사용자가 선택한 문서와 선택하지 않은 문서는 각각 사용자 모델 신경회로망을 학습하는데 쓰이게 되며 오랜 시간 동안 사용함에 따라 회로망은 사용자의 성향에 적응하게 되어 보다 정확한 검색을 수행하게 된다.

  • PDF

Fuzzy Learning Rule Using the Distance between Datum and the Centroids of Clusters (데이터와 클러스터들의 대표값들 사이의 거리를 이용한 퍼지 학습법칙)

  • Kim, Yong-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.301-304
    • /
    • 2007
  • 학습법칙은 신경회로망의 성능에 중요한 영향을 미친다. 본 논문은 데이터와 클러스터들의 대표값들 사이의 거리를 고려하여 학습률을 정하는 새로운 퍼지 학습법칙을 제안한다. 클러스터들의 대표값을 조정할 때, 이러한 고려는 outlier에 비하여 결정경계선 근처에 있는 데이터의 반영도를 높임으로써 outlier의 클러스터의 대표값에 미치는 영향도를 낮출 수 있다. 따라서 outlier들이 결정경계선을 악화시키는 것을 방지할 수 있다. 이 새로운 퍼지 학습법칙을 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 제안한 퍼지 신경회로망과 다른 감독 신경회로망들의 성능을 비교하기 위하여 iris 데이터를 사용하였다. iris 데이터를 사용하여 테스트한 결과 제안한 퍼지 신경회로망의 성능이 우수함을 보였다.

  • PDF

Color Image Enhancement Using Human Visual Properties and Neural Network (인간의 시각 특성과 신경회로망을 이용한 칼라영상의 향상)

  • Sin, Hyeon-Uk;Jo, Seok-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3265-3274
    • /
    • 1998
  • 본 논문에서는 인간의 칼랄 인식 특성인 명도, 채도 및 색조의 관계를 학습시킨 신경회로망을 이용하여 열화된 영상의 채도 부분을 향상하는 칼라영상향상법으 제안하였다. 제안한 방법은 우선 표준영상으로부터 여러 단계 열화된 영상들로부터 얻은 다양한 명도, 채도 및 색조의 관계를 신경회로망의 입력으로 하고 표준영상의 채도를 목표차로 해서 신경회로망을 학습시킨다. 그리고 이렇게 학습된 신경회로망에 열화된 영상의 명도, 채도, 색조 그리고 향상시킨 명도를 입력하면 향상된 채도를 얻을 수 있는 칼라영상향상방법이다. 본 논문에서는 제안한 방법이 기존의 칼라영상향상법에서 가장 문제가 되었던 영상 향상 시 칼라범위를 초과하는 문제와 채도 향상비의 인위적 선택문제를 해결하고 채도의 대비를 향상시켜 선명한 영상을 얻을 수 있는 방법임을 밝혔다.

  • PDF

Wavelet Network for Stable Direct Adaptive Control of Nonlinear Systems (비선형 시스템의 안정한 직접 적응 제어를 위한 웨이브렛 신경회로망)

  • 서승진;연정흠;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.317-323
    • /
    • 1998
  • 이 논문에서는 웨이브렛 신경회로망을 사용하여 알려지지 않은 비선형 시스템을 안정하게 적응제어하는 문제를 다룬다. 비선형 시스템의 정확한 제어는 함수를 근사화하는 데 사용된 함수 근사화기의 정확성과 효율성에 의존한다. 이에 비선형 시스템 제어에 기준 함수의 선택이 자유롭고 함수 근사화 능력이 뛰어난 웨브렛 신경회로망을 사용한다. 초기 웨이브렛 신경회로망 제어기 설정은 웨이브렛 신경회로망 변수인 신축과 이동 값을 제어기 입력의 시-주파수 특성을 분석해서 구하고, 연결강도는 Lyapunov 안정성 이론에 기초한 적응 법칙을 사용하여 조절한다. 이를 비선형 시스템인 역 진자 시스템에 적용한다.

  • PDF

Analysis of Dynamical State Transition and Effects of Chaotic Signal in Cyclic Neural Network (순환결합형 신경회로망의 동적 상태천이 해석과 카오스 신호의 영향)

  • 김용수;박철영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.199-202
    • /
    • 2002
  • 신경회로망을 동적 정보처리에 응용하기 위해서는 비대칭 결합 신경회로망에서 생성되는 동적 상태천이에 관한 직관적 이해가 필요하다. 자기결합을 갖고 결합하중치가 비대칭인 순환결합형 신경회로망은 복수 개의 리미트사이클이 기억 가능하다는 것이 알려져 있다. 현재까지 이산시간 모델의 네트워크에 대한 상태천이 해석은 상세하게 이루어져 왔다. 그러나 연속시간 모델에 대한 해석은 네트워크 규모의 증가에 따른 급격한 계산량의 증가 때문에 연구가 그다지 활발하게 이루어지지 않고 있다. 본 논문에서는 각 뉴런이 최근접 뉴런에만 이진화된 결합하중 +1 및 -1로 연결된 연속시간모델 순환결합형 신경회로망의 동적인 상태천이 특성을 해석하여 이산시간 모델에서 기억 가능한 리미트사이클과의 차이점을 분석한다. 또한 연속시간 네트워크 모델에 카오스 신호를 인가하여 리미트사이클간의 천이를 제어할 수 있는 가능성을 분석하여 동적정보처리에 네트워크를 응용할 수 있는 가능성을 검토한다.

Design of Neural Network Controllers for High Speed Induction Motor Drives (초고속 유도전동기 구동을 위한 신경회로망 제어기 설계)

  • 김윤호;이병순;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 1997
  • In this paper, a high speed motor drive system using an indirect adaptive neural network controller is proposed. In the variable high speed motor drives, the speed response can be deteriorated by long settling time and high overshoot. To obtain a good dynamical performance, an adaptive feedforward controller consisted of Neural Network Controller(NNC) and Neural Network Emulator(NNE) is applied. The NNE is used to identify the parameters and characteristics of high speed motor. To train the controller, the weights are dynamically adjusted using the back propagation algorithm. Computer simulation and implementation of the proposed system is described.

  • PDF

Trajectory control for a Robot Manipulator by using neural network (신경회로망을 사용한 로봇 매니퓰레이터의 궤적 제어)

  • 안덕환;양태규;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.7
    • /
    • pp.610-614
    • /
    • 1991
  • This paper proposes a trajectory constrol fo a robot manipulator by using neural network. The inverse dynamic model of manipuator is learned by neural network. The manipulator is controlled by weight values of the learned neural network. The weight valuese is change with a torque of liner vontroller and a acceleration error. Phsically, the totlal torque for a manipualator is a sum of the liner controller torque and the nerural network controller torque. The proposed control effect is estimated by computer simulation.

  • PDF