Proceedings of the Korean Institute of Intelligent Systems Conference
/
1997.10a
/
pp.287-290
/
1997
신경회로망은 높은 정확도의 학습 결과를 제시하는 장점을 가지고 있어서 패턴 인식을 포함한 여러 분야에서 널리 사용되어지고 있다. 그러나 신경회로망의 설계에 있어 최적의 뉴런과 층의 개수, 그리고 그 연결 등의 기하학적 해답을 제시하기가 어렵고, 서은이 우수하다고 알려진 역전파 학습 알고리즘도 오차가 없는 완벽한 학습 결과를 제시하지 못하며, 상당히 많은 학습 시간이 걸린다는 단점들을 가지고 있다. 이러한 단점들을 극복하기 위해 선형 신경회로망을 합성하는 새로운 방법을 제안하는데, 이진 함수 최소화(binary function minimization)과정을 거친 minimal-sum-of-product(MSP)를 통해서 이진 클래스 패턴(binary class pattem)을 표현 함으로써 오차가 없는 학습 결과를 얻을 수 있으며, 학습에 필요한 패턴과 학습에 걸리는 시간도 대폭 줄일수 있다. 본 논문에서는 유전자 알고리즘을 이용하여 선형 신경회로망을 합성하는 방법을 제안하며, 여러 가지 예제를 통해 제안한 방법의 우수성을 보인다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.265-268
/
2004
본 논문은 최적화 방법인 유전자 알고리즘을 이용하여 진화 컴퓨팅 기반 RBF 신경회로망을 이용한 새로운 비선형 시스템 설계 방법을 제안한다. 비선형 시스템 설계시 문제점으로는 복잡성과 불확실성을 들수 있으며, 이러한 문제를 해결하기 위해서 지능형 모델을 사용하게 되었다. 본 논문에서는 일반적인 신경회로망보다 성능이 뛰어난 RBF 신경회로망을 사용하여 비선형 시스템을 모델링 한다. HCM 클러스터링을 이용하여 유사한 특성을 가진 비선형 데이터를 분류하여 입력으로 사용한다. 제안한 진화 컴퓨팅 기반 RBF 신경회로망을 이용한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 학습 데이터와 테스트 데이터를 이용하여 그 우수성을 보인다.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.5
/
pp.449-458
/
2000
In this paper, we propose a feed identification method using neural network to predict feed in crude distillation unit. The proposed FINN(feed identifier by neural network) is functionally composed of two modes-training mode and prediction mode. Also, we implement a neural network-based soft sensor system using Borland C++(3.0) Builder. The effectiveness of the proposed neural network-based feed identification method is shown by simulation results.
Journal of the Korea Institute of Military Science and Technology
/
v.1
no.1
/
pp.82-91
/
1998
This paper presents a neural networks based approach for the problem of sensor failure detection and accommodation for ship without physical redundancy in the sensors. The designed model consists of two neural networks. The first neural network is responsible for the failure detection and the second neural network is responsible for the failure identification and accommodation. On the yaw rate sensor of ship, simulation results indicates that the proposed method can be useful as failure detector and sensor estimator.
자율주행시스템은 복잡한 환경에서 효과적인 주행을 위해서 센서를 통해 주변의 정보를 수집하고 주변환경에 적절한 동작을 취해야 한다. 이러한 자율주행시스템에 지능적인 방법을 통하여 새롭게 제안한 방법을 서술하였다. 퍼지 논리를 이용하여 운전자와 같이 차량이 차선을 따라 주행하기 위한 퍼지 논리 제어기(FLC)가 설계되었다. 함축적인 차량모델을 기반으로 설계한 퍼지 논리 제어기가 복잡하고 정확한 차량모델을 기반으로 설계된 PID나 FSLQ 제어기와 동등한 성능을 발휘하였다. 인간의 운전방법을 학습할 수 있는 신경회로망을 이용하여 자율주행시스템에 적용하였다. 퍼지 신경회로망은 인간의 제어특성을 반영하도록 설계되었으며 자동으로 생성된 제어기는 퍼지 논리 제어나 신경회로망의 기법보다 우수한 성능을 발휘하였다. 퍼지 논리, 신경회로망, 유전자 알고리즘 등의 인간의 지능 모델에 기초를 둔 방법을 자율주행차량의 제어에 도입하므로써 기존의 자율주행시스템의 문제점을 극복하는데 주요한 역할을 하였다. 앞으로 퍼지 논리, 신경회로망, 유전자 알고리즘은 각각의 강점을 융합하거나, 고전적인 제어 알고리즘과 결합하므로써 더욱 우수한 성능을 발휘할 것으로 예상된다.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.4
/
pp.460-465
/
2006
This paper presents a new fuzzy learning rule which considers the Euclidean distances between the input vector and the prototypes of classes. The new fuzzy learning rule is integrated into the supervised IAFC neural network 4. This neural network is stable and plastic. We used iris data to compare the performance of the supervised IAFC neural network 4 with the performances of back propagation neural network and LVQ algorithm.
The Journal of the Korea institute of electronic communication sciences
/
v.5
no.4
/
pp.357-362
/
2010
This paper proposes the speech and noise recognition system by using a neural network in order to detect the speech and noise sections at each frame. The proposed neural network consists of a layered neural network training by back-propagation algorithm. First, a power spectrum obtained by fast Fourier transform and linear predictive coefficients are used as the input to the neural network for each frame, then the neural network is trained using these power spectrum and linear predictive coefficients. Therefore, the proposed neural network can train using clean speech and noise. The performance of the proposed recognition system was evaluated based on the recognition rate using various speeches and white, printer, road, and car noises. In this experiment, the recognition rates were 92% or more for such speech and noise when training data and evaluation data were the different.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.23
no.1
/
pp.41-48
/
2009
This paper presents an Neural Network(NN) controller for Maximum Power Point Tracking (MPPT) of PV supplied DC motor. A variation of solar irradiation is most important factor in the MPPT of PV system. That is nonlinear, aperiodic and complicated. NN was widely used due to easily solving a complex math problem. Proposed photovoltaic system consists of NN, DC-DC converter, DC motor and load(cf, pump). NN algorithm apply to DC-DC converter through an Adaptive control of Neural Network, calculates Converter-Chopping ratio using an Adaptive control of NN. The results of an Adaptive control of NN compared with the results of Converter-Chopping ratio which are calculated mathematical modeling and evaluate the proposed algorithm. The experimental data show that an adequacy of the algorithm was established through the compared data.
Kim, Guenhwan;Lee, Seokjin;Lee, Kyunkyung;Lee, Donghwa
Journal of the Korea Industrial Information Systems Research
/
v.25
no.4
/
pp.29-38
/
2020
In this research, we proposed the active pulse classification algorithm using multi-label convolutional neural networks for active sonar system. The proposed algorithm has the advantage of being able to acquire the information of the active pulse at a time, unlike the existing single label-based algorithm, which has several neural network structures, and also has an advantage of simplifying the learning process. In order to verify the proposed algorithm, the neural network was trained using sea experimental data. As a result of the analysis, it was confirmed that the proposed algorithm converged, and through the analysis of the confusion matrix, it was confirmed that it has excellent active pulse classification performance.
The Transactions of the Korean Institute of Power Electronics
/
v.5
no.2
/
pp.131-139
/
2000
일반적으로 시스템 인식과 제어에 이용하는 다층 신경회로망은 기존의 역전파 알고리즘을 이용한다. 그러나 결선강도에 대한 오차의 기울기를 구하는 방법이기 때문에 국부적 최소점에 빠지기 쉽고, 수렴속도가 매우 늦으며 초기 결선강도 값들이나 학습계수에 민감하게 반응한다. 이와 같은 단점을 개선하기 위하여 확장된 칼만 필터링 기법을 역전파 알고리즘에 결합하였으나 계산상의 복잡성 때문에 망의 크기가 증가하면 실제 적용할 수 없다. 최근 신경회로망을 선형과 비선형 구간으로 구분하고 칼만 필터링 기법을 도입하여 수렴속도를 빠르게 하고 초기 결선강도 값에 크게 영향을 받지 않도록 개선하였으나, 여전히 은닉층의 선형 오차값을 역전파 알고리즘에 의해서 계산하기 때문에 학습계수에 민감하다는 단점이 있다. 본 논문에서는 위에서 언급한 기존의 신경회로망 알고리즘의 문제점을 개선하기 위하여 은닉층의 목표값을 최적기법에 의하여 직접계산하고 각각의 결선강도 값은 반복최소 자승법으로 온라인 학습하는 알고리즘을 제안하고 이들 신경회로망 알고리즘과 비교하고자 한다. 여러 가지 시뮬레이션과 실험을 통하여 제안된 방법이 초기 결선강도에 크게 영향을 받지 않으며, 기존의 학습계수 선정에 따른 문제점을 해결함으로써 신경회로망 모델에 기초한 실시간 제어기 설계에 응용할 수 있도록 하였다. 또한, 유도전동기의 속도추정과 제어에 적용하여 좋은 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.