• 제목/요약/키워드: 심프슨의 파라독스

검색결과 1건 처리시간 0.018초

내포량의 평균 공식과 조작적 학습법 (The Mean Formula of Implicate Quantity)

  • 김명운
    • 한국수학사학회지
    • /
    • 제23권3호
    • /
    • pp.121-140
    • /
    • 2010
  • 본 논문은 속도, 온도, 농도, 밀도, 단가, 일인당 국민소득 등의 내포량의 평균을 구할 때, 내포량마다 다른 공식을 적용하여 구해야 하는 불편함을 해소하기 위하여, 지레의 원리를 이용하여 두 내포량의 평균 공식 $M=\frac{x_1f_1+x_2f_2}{f_1+f_2}$를 유도하였고, 이 공식의 관계적 이해를 돕기 위해 지레의 원리를 이용한 조작적 학습법을 제시하였다. 비의 의미의 분수는 그 수치만으로 덧셈을 할 수가 없어 비가법적이라고 한 것을 비중을 적용하여 계산할 수 있음을 보인 것이다. 또한 두 양에서뿐만 아니라 여러 양의 덧셈도 단 한번의 공식에의 적용으로 해결할 수 있도록 확장 적용시킨 $M=\frac{x_1f_1+x_2f_2+{\cdots}+x_nf_n}{N}$ (단, $f_1+f_2+{\cdots}+f_n=N$) 은 새로운 공식이 가중평균을 구하는 공식이었다는 것을 밝혔다. 또한 통계학에서 의문거리였던 하위 제표의 방향성과 다른 모습을 보이는 상위제표의 통계자료에 대한 심프슨의 파라독스의 의문점을 가중평균의 원리를 이용하여 밝혔다.